Researchers discover intact brain cells of man killed by Mt Vesuvius eruption

The young man died nearly 2,000 years ago in the volcanic eruption that buried Pompeii.

Credit: PLOS ONE
  • A team of researchers in Italy discovered the intact brain cells of a young man who died in the Mount Vesuvius eruption in A.D. 79.
  • The brain's cell structure was visible to researchers (who used an electron microscope) in a glassy, black material found inside the man's skull.
  • The material was likely the victim's brain preserved through the process of vitrification in which the intense heat followed by rapid cooling turned the organ to glass.
Keep reading Show less

Scientists see an earthquake boomerang back and forth in the Atlantic

Seismic data from 2016 reveals a rare bi-directional boomerang earthquake.

Credit: Hicks et al., published in Nature Geoscience / © Imperial College London
  • An earthquake ran quickly east before turning west beneath the Atlantic Ocean near the equator in 2016.
  • Such earthquakes are likely to pack significantly more destructive power.
  • Land-based boomerang earthquakes may have been witnessed, but have never been recorded seismographically.

It was definitely an odd story Rosario García González told in the summer of 2010.

González is an elder of the indigenous Cucapah community in Baja, California/Mexico. He and his wife were in their trailer in Paso Inferior, about 12 miles south-southwest of Mexicali when they heard and felt the distinct, powerful rumble of earthquake moving across their valley. Looking outside, they watched as a cloud of light-colored dust was thrown up into the air along a path going in the opposite direction, as if a truck was retracing the earthquake's path. Except there was no truck.

It's not that scientists didn't believe González's story — they just couldn't figure out what he saw. Could an earthquake possible boomerang? The answer appears to be yes. A new study of seismic data has found clear evidence of another boomerang earthquake — technically a "back-propagating supershear rupture" — that shot back and forth deep beneath the Atlantic Ocean in 2016.

Boom and back

Reconstruction of Romanche fracture zone

Reconstruction of Romanche fracture zone

Credit: Hicks et al., published in Nature Geoscience / © Imperial College London

The research was conducted by scientists from the University of Southampton and Imperial College, London in the U.K. First author Stephen Hicks of Imperial College says, "Whilst scientists have found that such a reversing rupture mechanism is possible from theoretical models, our new study provides some of the clearest evidence for this enigmatic mechanism occurring in a real fault."

The 2016 magnitude 7.1 quake occurred along the Romanche fracture zone — this is a 559 mile-long fault line near the Atlantic equator, about 650 miles west of the coast of Liberia.

Speaking to National Geographic, Hicks recalled the discovery of what at first seemed like a pair of pulses, which closer examination indicated might actually be two phases of the same quake. If so, the quake zipped eastward, and then west. "This was a weird sort of configuration to see," he says. Confirmation of the boomerang was provided by Ryo Okuwaki of Japan's University of Tsukuba via the identification of seismic echoes from the distant event.

"Even though the fault structure seems simple, the way the earthquake grew was not, and this was completely opposite to how we expected the earthquake to look before we started to analyse the data," admits Hicks.

When modeled, the data collected by 39 seismometers arrayed along the bottom of the ocean-floor gash depicted a temblor that moved rapidly in one direction before suddenly turning around and going back in the other at a blistering 11,000 miles per hour. This likely caused seismic waves to pile up similarly to what happens with air-pressure waves trigger a sonic boom, significantly magnifying the quake's power.

Land boomerangs

Rosario Garc\u00eda Gonz\u00e1lez (left) points to where earthquake happened

Rosario García González points to where the earthquake doubled back.

Image source: CISESE/USGS

While it's logistically simpler to record and study earthquakes on land thanks to the availability of seismometer networks, land-based temblors tend to track complex fault systems, with geological slips occurring in a series like falling dominoes. Sea-bottom quakes appear to be simpler, making it easier to discern their underlying mechanisms and travels.

Only a few boomerang quakes have ever been recorded, and examples of them on land are virtually nonexistent, making accounts such as González's that much more valuable. Clearly, quakes that double back on themselves stand to do considerably more damage than one-way shakers, allowing more outward propagation of destructive seismic waves in the direction of travel, an amount that would be doubled in a boomerang. Seismologist Kasey Aderhold tells National Geographic that "studies like this help us understand how past earthquakes ruptured, how future earthquakes may rupture, and how that relates to the potential impact for faults near populated areas."

Scientists developing computer models aimed at predicting seismic events haven't thus far been able to create worthy simulations of boomerang quakes, so the details provided the U.K. researchers provide some of the best information yet collected on these geologic oddities.

'A world with no ice': Confronting the horrors of climate change

The complacent majority needs to step up and call for action on climate change.

  • Climate change is often framed as a debate that has split society down the middle and that requires more evidence before we can act. In reality, 97 percent of scientists agree that it is real and only 3 percent are skeptical. A sticking point for some is the estimated timeline, but as Columbia University professor Philip Kitcher points out, a 4-5 Celsius temperature increase that makes the planet uninhabitable is a disaster no matter when it happens.
  • In this video, 9 experts (including professors, astronomers, authors, and historians) explain what climate change looks like, how humans have already and are continuing to contribute to it, how and why it has become politicized, and what needs to happen moving forward for real progress to be made.
  • David Wallace-Wells, journalist and New America Foundation National Fellow, says that the main goal of climate action is not to win over the skeptical minority, but to "make those people who are concerned but still fundamentally complacent about the issue to be really engaged in a way that they prioritize climate change in their politics and their voting and make sure that our leaders think of climate change as a first-order political priority."
Keep reading Show less

Experts are already predicting an 'active' 2020 hurricane season

It looks like a busy hurricane season ahead. Probably.

Image source: Shashank Sahay/unsplash
  • Before the hurricane season even started in 2020, Arthur and Bertha had already blown through, and Cristobal may be brewing right now.
  • Weather forecasters see signs of a rough season ahead, with just a couple of reasons why maybe not.
  • Where's an El Niño when you need one?

Welcome to Hurricane Season 2020. 2020, of course, scoffs at this calendric event much as it has everything else that's normal — meteorologists have already used up the year's A and B storm names before we even got here. And while early storms don't necessarily mean a bruising season ahead, forecasters expect an active season this year. Maybe storms will blow away the murder hornets and 13-year locusts we had planned.

NOAA expects a busy season

According to NOAA's Climate Prediction Center, an agency of the National Weather Service, there's a 60 percent chance that we're embarking upon a season with more storms than normal. There does, however, remain a 30 percent it'll be normal. Better than usual? Unlikely: Just a 10 percent chance.

Where a normal hurricane season has an average of 12 named storms, 6 of which become hurricanes and 3 of which are major hurricanes, the Climate Prediction Center reckons we're on track for 13 to 29 storms, 6 to 10 of which will become hurricanes, and 3 to 6 of these will be category 3, 4, or 5, packing winds of 111 mph or higher.

What has forecasters concerned are two factors in particular.

This year's El Niño ("Little Boy") looks to be more of a La Niña ("Little Girl"). The two conditions are part of what's called the El Niño-Southern Oscillation (ENSO) cycle, which describes temperature fluctuations between the ocean and atmosphere in the east-central Equatorial Pacific. With an El Niño, waters in the Pacific are unusually warm, whereas a La Niña means unusually cool waters. NOAA says that an El Niño can suppress hurricane formation in the Atlantic, and this year that mitigating effect is unlikely to be present.

Second, current conditions in the Atlantic and Caribbean suggest a fertile hurricane environment:

  • The ocean there is warmer than usual.
  • There's reduced vertical wind shear.
  • Atlantic tropical trade winds are weak.
  • There have been strong West African monsoons this year.

Here's NOAA's video laying out their forecast:

But wait.

ArsTechnica spoke to hurricane scientist Phil Klotzbach, who agrees generally with NOAA, saying, "All in all, signs are certainly pointing towards an active season." Still, he notes a couple of signals that contradict that worrying outlook.

First off, Klotzbach notes that the surest sign of a rough hurricane season is when its earliest storms form in the deep tropics south of 25°N and east of the Lesser Antilles. "When you get storm formations here prior to June 1, it's typically a harbinger of an extremely active season." Fortunately, this year's hurricanes Arthur and Bertha, as well as the maybe-imminent Cristobal, formed outside this region. So there's that.

Second, Klotzbach notes that the correlation between early storm activity and a season's number of storms and intensities, is actually slightly negative. So while statistical connections aren't strongly predictive, there's at least some reason to think these early storms may augur an easy season ahead.

Image source: NOAA

Batten down the hatches early

If 2020's taught us anything, it's how to juggle multiple crises at once, and layering an active hurricane season on top of SARS-CoV-2 — not to mention everything else — poses a special challenge. Warns Treasury Secretary Wilbur Ross, "As Americans focus their attention on a safe and healthy reopening of our country, it remains critically important that we also remember to make the necessary preparations for the upcoming hurricane season." If, as many medical experts expect, we're forced back into quarantine by additional coronavirus waves, the oceanic waves slamming against our shores will best be met by storm preparations put in place in a less last-minute fashion than usual.

Ross adds, "Just as in years past, NOAA experts will stay ahead of developing hurricanes and tropical storms and provide the forecasts and warnings we depend on to stay safe."

Let's hope this, at least, can be counted on in this crazy year.

Chernobyl forest fires spike radiation levels 16 times above normal

Fires pose a major health risk to people living near irradiated sites.

Yegor Firsov via Facebook
  • Firefighters in Ukraine battled forest fires this weekend near the site of the 1986 Chernobyl nuclear disaster.
  • The fires were started by a 27-year-old man who wanted to burn grass "for fun," police said.
  • Forest fires can kick up radioactive material into the air, where wind can carry it outside of the exclusion zone.

Keep reading Show less
Quantcast