Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Black holes, quasars & supernova: The most astounding phenomenon in outer space
Everything you wanted to know about black holes, supernova, and quasars but were afraid to ask.

In the vast outreach of space, there exist cosmic events so unbelievably strange and powerful, they’ve changed the way we view the universe and ourselves in it. The inhuman distances make dimensional and spatial comparison difficult to accomplish. But that hasn’t stopped us from looking out into the stars and trying to make sense of it all. Over the past nearly three decades, we’ve used the Hubble Space Telescope to look out into the universe.
Current estimates for some time have pointed to there being some 100 - 200 billion galaxies in our observable universe. Some astrophysicists believe that this could be underselling the real estate of the cosmos and think that there could actually be 2 trillion galaxies in total. Either way, the observable universe as we know it is unfathomably big, and that’s without taking into account string theory and other possible dimensions. Within this great universe nestled in the heart of faraway galaxies and outer rims of places millions upon billions of light years away, we look into some of the most fascinating phenomena in outer space. The quasar pistons that fire off from the mysterious black hole engines of your universe, cascading and dying stars that shine brighter than a whole galaxy for a few universal moments; these are the giants of the macrocosm.
Black holes and the quasar blast
Black holes are objects that have an incredible amount of mass and density, so much that not even light can escape the confines of its gravity. The theory of black holes’ existence has been around for nearly two centuries. While it’s still impossible to directly see a black hole, the advent of space telescopes with special tools allowed us to detect them. We’re able to find black holes due to the effects of gravitational attraction on the stars and planets around them. Scientists have proved that there is most likely a supermassive black hole at the center of every galaxy.
Black holes come in varying sizes. Some can be as small as a single atom, but its mass as dense as a mountain range. Stellar black holes are around the mass of our Sun, these are usually created when a large star explodes in a supernova. Supermassive black holes are many million times the mass of the Sun.
One of the latest natures of black holes to be discovered was the blast of star-like objects emitting from galactic centers. This is the quasar, which is a jetlike stream of energy in epic proportion compared to other space objects around it. These two occurrences in the universe go hand-in-hand. Hubble has been able to get a better grasp on both supermassive black holes and quasars. Some black holes are 3 billion times the mass of the Sun with equally powerful quasars jets and glowing discs of material surrounding it. European Space Agency (ESA) astronomer Duccio Macchetto stated that:
"Hubble provided strong evidence that all galaxies contain black holes millions or billions of times heavier than our sun. This has quite dramatically changed our view of galaxies. I am convinced that Hubble over the next ten years will find that black holes play a much more important role in the formation and evolution of galaxies than we believe today. Who knows, it may even influence our picture of the whole structure of the Universe...?"
For a long time, one of the most perplexing questions in astrophysics was the mechanism behind quasars which are intrinsically linked with these black holes. Short for “quasi-stellar radio source,” a quasar is one of the brightest known objects in the universe. Some are believed to produce 10 to 100 times more energy than the entire Milky Way in a space confined to the size of our solar system.
A majority of quasars are billions of lightyears away from earth and are monitored by measuring the spectrum of their light. While we don’t know the exact operations behind a quasar, we do have a few ideas. Current scientific consensus leads to astronomers to agreeing that quasars are produced by supermassive black holes which are consuming the matter around them. As the matter is sucked into the hole and spins around, large amounts of radiation in the form of x-rays, visible light rays, gamma rays and radio waves are blasted off. This type of churning chaotic friction created by the gravitational pull and stresses then erupts and the escaping energy forms the quasar. The connections between quasars and black holes are intrinsically linked. Supernovas are also responsible for the creation of black holes. The way that all of this adds up is slowly coming together as scientists and astronomers put the cosmic pieces in their place.
Historical discoveries of quasars and supernova
Quasars were discovered in 1963 by Caltech astronomer Maarten Schmidt, this discovery was instrumental in supporting the Big Bang theory. Schmidt spotted the first quasar while working at the Mt. Palomar Observatory. It was at first mistaken for a star as it was billions of light years away. Thanks to the telescopes at Mount Palomar at this time and the advances in radio astronomy, the universe was beginning to become a lot bigger of a place –nearly increasing tenfold at the time.
Maarten Schmidt was studying radio waves emitting from something called Source 3C 273. He thought it peculiar that the radio signals seemed to be coming from a star. The spectrum produced bright spectral lines and hydrogen gas emissions that were shifting into different wavelengths. Redshift and blueshift describe how lights shift towards different wavelengths to determine if the objects are moving closer or further away from us.
Hubble's Law states that:
“An object with that red shift must be located billions of light-years away. It must be brighter than a million galaxies to appear as bright as a star at that great distance.”
This would lead to 3C 273 becoming known as the first quasar. Following this discovery, many more quasars throughout the universe would be found – some even further away than 3C 273. As we gazed back in time, scientists garnered further evidence for the big bang and were able to chart out the history of younger galaxies in the early universe.
But this wasn’t the first time that distant objects in the night sky were mistaken for stars. Various times in human history, even before the telescope was invented – humans discovered supernova which they mistook for regular stars.
A supernova is an exceedingly bright start that lasts for only a moment in time. It is the end of a star’s life. A supernova can briefly outshine a whole galaxy and produce more energy than the Sun in a matter of moments. NASA considers the supernova to be the largest explosion that takes place in space.
One of the first recorded supernovas was logged in 185 A.D. by Chinese astronomers. It’s currently called the RCW 86. According to their records, the star stayed in the sky for eight months. There have been a total of seven recorded supernovas before telescopes according to the Encyclopedia Britannica.
One famous supernova that we know today as the Crab Nebula, was seen throughout the world around 1054. Korean astronomers recorded this explosion in their records and Native Americans may have been inspired by it according to their rock paintings dated to that time. The supernova was so bright that it could be seen during the day.
The term supernova was first used in the 1930s, by Walter Baade and Fritz Zwicky when they witnessed an exploding star called S ANdromedae or SN 1885A.
A supernova is the death of a star and there are a whole lot of stars in the universe. On average, it’s predicted that a supernova occurs once every 50 years in a galaxy like the Milky Way. That means that a star is likely exploding every second somewhere in the universe.
How a star dies depends on the size of it. For example, the Sun isn’t large enough to explode and become a supernova at the end of its lifetime. It will, on the other hand, grow into a red giant at the end of its lifetime in a couple of billion years. Stars go supernova accordingly to their mass, there are two types of ways a star can do this.
-
Type I Supernova: A star gathers matter from nearby neighbors and causes a runaway nuclear reaction which ignites its explosion.
-
Type II Supernova: A star runs out of nuclear fuel and then collapses upon itself, usually causing a black hole.
Scientists are getting better at witnessing these types of events. In 2008, astronomers witnessed the initial act of the explosion. For years they’d predicted an outburst of X-rays, which was confirmed as they watched the evolution of the explosion right from the start.
As our telescopes grow larger and become more advanced, we will be able to dive into the secrets and intricacies that these phenomenon display. They may be distant but are important to understanding the pillars and foundations of what holds up our universe.

‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create
How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.
- A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
- It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
- While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Tribalism and discrimination
<p>One question the "Genetic Pressure" series explores: What would tribalism and discrimination look like in a world with designer babies? As designer babies grow up, they could be noticeably different from other people, potentially being smarter, more attractive and healthier. This could breed resentment between the groups—as it does in the series.</p><p>"[Designer babies] slowly find that 'everyone else,' and even their own parents, becomes less and less tolerable," author Eugene Clark told Big Think. "Meanwhile, everyone else slowly feels threatened by the designer babies."</p><p>For example, one character in the series who was born a designer baby faces discrimination and harassment from "normal people"—they call her "soulless" and say she was "made in a factory," a "consumer product." </p><p>Would such divisions emerge in the real world? The answer may depend on who's able to afford designer baby services. If it's only the ultra-wealthy, then it's easy to imagine how being a designer baby could be seen by society as a kind of hyper-privilege, which designer babies would have to reckon with. </p><p>Even if people from all socioeconomic backgrounds can someday afford designer babies, people born designer babies may struggle with tough existential questions: Can they ever take full credit for things they achieve, or were they born with an unfair advantage? To what extent should they spend their lives helping the less fortunate? </p>Sexuality dilemmas
<p>Sexuality presents another set of thorny questions. If a designer baby industry someday allows people to optimize humans for attractiveness, designer babies could grow up to find themselves surrounded by ultra-attractive people. That may not sound like a big problem.</p><p>But consider that, if designer babies someday become the standard way to have children, there'd necessarily be a years-long gap in which only some people are having designer babies. Meanwhile, the rest of society would be having children the old-fashioned way. So, in terms of attractiveness, society could see increasingly apparent disparities in physical appearances between the two groups. "Normal people" could begin to seem increasingly ugly.</p><p>But ultra-attractive people who were born designer babies could face problems, too. One could be the loss of body image. </p><p>When designer babies grow up in the "Genetic Pressure" series, men look like all the other men, and women look like all the other women. This homogeneity of physical appearance occurs because parents of designer babies start following trends, all choosing similar traits for their children: tall, athletic build, olive skin, etc. </p><p>Sure, facial traits remain relatively unique, but everyone's more or less equally attractive. And this causes strange changes to sexual preferences.</p><p>"In a society of sexual equals, they start looking for other differentiators," he said, noting that violet-colored eyes become a rare trait that genetically engineered humans find especially attractive in the series.</p><p>But what about sexual relationships between genetically engineered humans and "normal" people? In the "Genetic Pressure" series, many "normal" people want to have kids with (or at least have sex with) genetically engineered humans. But a minority of engineered humans oppose breeding with "normal" people, and this leads to an ideology that considers engineered humans to be racially supreme. </p>Regulating designer babies
<p>On a policy level, there are many open questions about how governments might legislate a world with designer babies. But it's not totally new territory, considering the West's dark history of eugenics experiments.</p><p>In the 20th century, the U.S. conducted multiple eugenics programs, including immigration restrictions based on genetic inferiority and forced sterilizations. In 1927, for example, the Supreme Court ruled that forcibly sterilizing the mentally handicapped didn't violate the Constitution. Supreme Court Justice Oliver Wendall Holmes wrote, "… three generations of imbeciles are enough." </p><p>After the Holocaust, eugenics programs became increasingly taboo and regulated in the U.S. (though some states continued forced sterilizations <a href="https://www.uvm.edu/~lkaelber/eugenics/" target="_blank">into the 1970s</a>). In recent years, some policymakers and scientists have expressed concerns about how gene-editing technologies could reanimate the eugenics nightmares of the 20th century. </p><p>Currently, the U.S. doesn't explicitly ban human germline genetic editing on the federal level, but a combination of laws effectively render it <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">illegal to implant a genetically modified embryo</a>. Part of the reason is that scientists still aren't sure of the unintended consequences of new gene-editing technologies. </p><p>But there are also concerns that these technologies could usher in a new era of eugenics. After all, the function of a designer baby industry, like the one in the "Genetic Pressure" series, wouldn't necessarily be limited to eliminating genetic diseases; it could also work to increase the occurrence of "desirable" traits. </p><p>If the industry did that, it'd effectively signal that the <em>opposites of those traits are undesirable. </em>As the International Bioethics Committee <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">wrote</a>, this would "jeopardize the inherent and therefore equal dignity of all human beings and renew eugenics, disguised as the fulfillment of the wish for a better, improved life."</p><p><em>"Genetic Pressure Volume I: Baby Steps"</em><em> by Eugene Clark is <a href="http://bigth.ink/38VhJn3" target="_blank">available now.</a></em></p>Massive 'Darth Vader' isopod found lurking in the Indian Ocean
The father of all giant sea bugs was recently discovered off the coast of Java.
A close up of Bathynomus raksasa
- A new species of isopod with a resemblance to a certain Sith lord was just discovered.
- It is the first known giant isopod from the Indian Ocean.
- The finding extends the list of giant isopods even further.
The ocean depths are home to many creatures that some consider to be unnatural.
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzU2NzY4My9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTYxNTUwMzg0NX0.BTK3zVeXxoduyvXfsvp4QH40_9POsrgca_W5CQpjVtw/img.png?width=980" id="b6fb0" class="rm-shortcode" data-rm-shortcode-id="2739ec50d9f9a3bd0058f937b6d447ac" data-rm-shortcode-name="rebelmouse-image" data-width="1512" data-height="2224" />Bathynomus raksasa specimen (left) next to a closely related supergiant isopod, B. giganteus (right)
<p>According to<a href="https://www.livescience.com/supergiant-isopod-newfound-species.html" target="_blank" rel="dofollow"> LiveScience</a>, the Bathynomus genus is sometimes referred to as "Darth Vader of the Seas" because the crustaceans are shaped like the character's menacing helmet. Deemed Bathynomus raksasa ("raksasa" meaning "giant" in Indonesian), this cockroach-like creature can grow to over 30 cm (12 inches). It is one of several known species of giant ocean-going isopod. Like the other members of its order, it has compound eyes, seven body segments, two pairs of antennae, and four sets of <a href="https://www.livescience.com/supergiant-isopod-newfound-species.html" target="_blank" rel="noopener noreferrer dofollow">jaws</a>.</p><p>The incredible size of this species is likely a result of deep-sea gigantism. This is the tendency for creatures that inhabit deeper parts of the ocean to be much larger than closely related species that live in shallower waters. B. raksasa appears to make its home between 950 and 1,260 meters (3,117 and 4,134 ft) below sea <a href="https://news.nus.edu.sg/research/new-species-supergiant-isopod-uncovered" target="_blank" rel="noopener noreferrer dofollow">level</a>. </p><p>Perhaps fittingly for a creature so creepy looking, that is the lower sections of what is commonly called <a href="https://en.wikipedia.org/wiki/Mesopelagic_zone" target="_blank" rel="noopener noreferrer dofollow">The Twilight Zone</a><em>, </em>named for the lack of light available at such depths. </p><p>It isn't the only giant isopod, <a href="https://en.wikipedia.org/wiki/Giant_isopod" target="_blank">far from it</a>. Other species of ocean-going isopod can get up to 50 cm long (20 inches) and also look like they came out of a nightmare. These are the unusual ones, though. Most of the time, isopods stay at much more reasonable <a href="https://indianexpress.com/article/explained/explained-raksasa-cockroach-from-the-deep-the-stuff-nightmares-are-made-of-6513281/" target="_blank" rel="noopener noreferrer dofollow">sizes</a>. </p><p>The discovery of this new species was published in <a href="https://zookeys.pensoft.net/article/53906/" target="_blank" rel="noopener noreferrer dofollow">ZooKeys</a>. The remainder of the specimens from the trip are still being analyzed. The full report will be published <a href="https://www.futurity.org/deep-sea-giant-isopod-bathynomus-raksasa-2422042/" target="_blank" rel="noopener noreferrer dofollow">shortly</a>.<em> </em></p>What benefit does this find have for science? And is it as evil as it looks?
<div class="rm-shortcode" data-media_id="7XqcvwWp" data-player_id="FvQKszTI" data-rm-shortcode-id="8506fcd195866131efb93525ae42dec4"> <div id="botr_7XqcvwWp_FvQKszTI_div" class="jwplayer-media" data-jwplayer-video-src="https://content.jwplatform.com/players/7XqcvwWp-FvQKszTI.js"> <img src="https://cdn.jwplayer.com/thumbs/7XqcvwWp-1920.jpg" class="jwplayer-media-preview" /> </div> <script src="https://content.jwplatform.com/players/7XqcvwWp-FvQKszTI.js"></script> </div> <p>The discovery of a new species is always a cause for celebration in zoology. That this is the discovery of an animal that inhabits the deeps of the sea, one of the least explored areas humans can get to, is the icing on the cake.</p><p>Helen Wong of the National University of Singapore, who co-authored the species' description, explained the importance of the discovery:</p><p>"The identification of this new species is an indication of just how little we know about the oceans. There is certainly more for us to explore in terms of biodiversity in the deep sea of our region." </p><p>The animal's visual similarity to Darth Vader is a result of its compound eyes and the curious shape of its <a href="https://lkcnhm.nus.edu.sg/research/sjades2018/" target="_blank" rel="noopener noreferrer dofollow" style="">head</a>. However, given the location of its discovery, the bottom of the remote seas, it may be associated with all manner of horrifically evil Elder Things and <a href="https://en.wikipedia.org/wiki/Cthulhu" target="_blank" rel="dofollow">Great Old Ones</a>. <em></em></p>These are the world’s greatest threats in 2021
We look back at a year ravaged by a global pandemic, economic downturn, political turmoil and the ever-worsening climate crisis.
Billions are at risk of missing out on the digital leap forward, as growing disparities challenge the social fabric.
Image: Global Risks Report 2021
<h3>Widespread effects</h3><p>"The immediate human and economic costs of COVID-19 are severe," the report says. "They threaten to scale back years of progress on reducing global poverty and inequality and further damage social cohesion and global cooperation."</p><p>For those reasons, the pandemic demonstrates why infectious diseases hits the top of the impact list. Not only has COVID-19 led to widespread loss of life, it is holding back economic development in some of the poorest parts of the world, while amplifying wealth inequalities across the globe.</p><p>At the same time, there are concerns the fight against the pandemic is taking resources away from other critical health challenges - including a <a href="https://www.weforum.org/agenda/2020/09/charts-covid19-malnutrition-educaion-mental-health-children-world/" target="_blank" rel="noopener noreferrer">disruption to measles vaccination programmes</a>.</p>Columbia study finds new way to extract energy from black holes
A new study explains how a chaotic region just outside a black hole's event horizon might provide a virtually endless supply of energy.
- In 1969, the physicist Roger Penrose first proposed a way in which it might be possible to extract energy from a black hole.
- A new study builds upon similar ideas to describe how chaotic magnetic activity in the ergosphere of a black hole may produce vast amounts of energy, which could potentially be harvested.
- The findings suggest that, in the very distant future, it may be possible for a civilization to survive by harnessing the energy of a black hole rather than a star.
The ergosphere
<p>The ergosphere is a region just outside a black hole's event horizon, the boundary of a black hole beyond which nothing, not even light, can escape. But light and matter just outside the event horizon, in the ergosphere, would also be affected by the immense gravity of the black hole. Objects in this zone would spin in the same direction as the black hole at incredibly fast speeds, similar to objects floating around the center of a whirlpool.</p><p>The Penrose process states, in simple terms, that an object could enter the ergosphere and break into two pieces. One piece would head toward the event horizon, swallowed by the black hole. But if the other piece managed to escape the ergosphere, it could emerge with more energy than it entered with.</p><p>The movie "Interstellar" provides an example of the Penrose process. Facing a fuel shortage on a deep-space mission, the crew makes a last-ditch effort to return home by entering the ergosphere of a blackhole, ditching part of their spacecraft, and "slingshotting" away from the black hole with vast amounts of energy.</p><p>In a recent study published in the American Physical Society's <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.023014" target="_blank" style="">Physical Review D</a><em>, </em>physicists Luca Comisso and Felipe A. Asenjo used similar ideas to describe another way energy could be extracted from a black hole. The idea centers on the magnetic fields of black holes.</p><p style="margin-left: 20px;">"Black holes are commonly surrounded by a hot 'soup' of plasma particles that carry a magnetic field," Comisso, a research scientist at Columbia University and lead study author, told <a href="https://news.columbia.edu/energy-particles-magnetic-fields-black-holes" target="_blank" rel="noopener noreferrer">Columbia News</a>.</p>Ergosphere representation
<p>In the ergosphere of a rotating black hole, magnetic field lines are constantly breaking and reconnecting at fast speeds. The researchers theorized that when these lines reconnect, plasma particles shoot out in two different directions. One flow of particles shoots off against the direction of the spinning black hole, eventually getting "swallowed" by the black hole. But the other flow shoots in the same direction as the spin, potentially gaining enough velocity to escape the black hole's gravitational pull.</p><p>The researchers proposed that this occurs because the breaking and reconnecting of magnetic field lines can generate negative-energy particles. If the negative-energy particles get "swallowed" by the black hole, the positive particles would theoretically be exponentially accelerated.</p><p style="margin-left: 20px;">"Our theory shows that when magnetic field lines disconnect and reconnect, in just the right way, they can accelerate plasma particles to negative energies and large amounts of black hole energy can be extracted," Comisso said. "It is like a person could lose weight by eating candy with negative calories."</p>Black hole
Event Horizon Telescope Collaboration
<p>While there might not be immediate applications for the theory, it could help scientists better understand and observe black holes. On an abstract level, the findings may expand the limits of what scientists imagine is possible in deep space.</p><p style="margin-left: 20px;">"Thousands or millions of years from now, humanity might be able to survive around a black hole without harnessing energy from stars," Comisso said. "It is essentially a technological problem. If we look at the physics, there is nothing that prevents it."</p>A psychiatric diagnosis can be more than an unkind ‘label’
A popular and longstanding wave of thought in psychology and psychotherapy is that diagnosis is not relevant for practitioners in those fields.
