Researchers announce a new state of matter: swirlons

Starling flocks, schools of fish, and clouds of insects all agree.

Credit: Fraser Morrison/Flickr
  • Scientists discover that active particles take a pass on Newton's Second Law.
  • Active particles exist in a "swirlonic" state of matter.
  • Swirlonic behavior explains some of the more dazzling natural phenomena such as starling swarms and shape-shifting schools of fish.
Keep reading Show less

Venus flytrap jaws create tiny magnetic fields when they snap shut

It's like a little magnetic "nom, nom."

Credit: Jeffery Wong/Unsplash
  • Venus flytrap leaves shut in response to physical touch, salt water, or thermal stimuli.
  • A team of scientists from Berlin have captured the magnetic charge that accompanies the closing of the plant's trap.
  • Incredibly sensitive, non-invasive atomic magnetometers picked up the elusive signal.

For many children, the revelation that there's such a thing as a Venus Flytrap, Dionaea muscipula, is an amazing moment. The choppers of the sneaky plant predators are like something out of a fairy tale gone wrong. Adults can't help but be fascinated by them too, and now scientists at Johannes Gutenberg University Mainz (JSU) and the Helmholtz Institute Mainz in Germany have discovered something new that's surprising about these little demons: Every time they entrap prey, they give off a measurable magnetic charge.

"We have been able to demonstrate that action potentials in a multicellular plant system produce measurable magnetic fields, something that had never been confirmed before," says lead author Anne Fabricant.

Guilt as magnetically charged

The plants' bivalved snap trap (left), side view of a destained trap lobe (right)

Credit: Fabricant, et al./Scientific Reports

According to Fabricant, the finding isn't that much of a shock: "Wherever there is electrical activity, there should also be magnetic activity," she tells Live Science. And it is electrical activity in the form of action potentials that trigger its maw—really a pair of leaf lobes—to close when a hapless bug lands inside them, attracted by the nectar with which the plants bait their trap.

Along the inner surfaces of the lobes are trichomes, hair-like projections that cause the trap to close when they're disturbed by prey. One touch of a trichome is unlikely to cause the trap to shut — perhaps a mechanism that helps the plant avoid wasting energy on false alarms. A couple of touches, though, and it's chow time. The lobes come together as the bristles at their edges intertwine to help contain the prey. As the traps compress the trapped insect, its own secretions such as uric acid cause the trap to shut even more tightly, and then digestion begins.

In any event, just because the JSU researchers had reason to suspect the plant would give off a magnetic charge, catching it doing so was not a simple task.

Reading the Venus flytrap's magnetic output

Average action potential and corresponding magnetic signals

Credit: Fabricant, et al./Scientific Reports

"The problem," says Fabricant, "is that the magnetic signals in plants are very weak, which explains why it was extremely difficult to measure them with the help of older technologies." Still, where there's a will: "You could say the investigation is a little like performing an MRI scan in humans."

It's not just trichome flicks that trigger the trap — it will also close if triggered by salt-water, or with an application of either hot or cold thermal energy. The researchers applied heat via a purpose-built Peltier device that wouldn't introduce any background magnetic noise to mask or overwhelm the faint magnetic signal they were seeking. For the same reason, the experiments were conducted in a magnetically shielded room at Physikalisch-Technische Bundesanstalt (PTB) in Berlin.

The researchers used atomic magnetometers to measure the planets magnetic charges. The atomic magnetometer is a glass cell containing a vapor of rubidium atoms. When the traps were triggered, the magnetic charges released changed the spins of the atoms' electrons.

The researchers picked up magnetic signals at an amplitude of up to 0.5 picoteslas. "The signal magnitude recorded is similar to what is observed during surface measurements of nerve impulses in animals," says Fabricant. It's over a million times weaker than the Earth's own magnetic field.

Biomagnetism

Other researchers have detected magnetic charges coming the firing of animal nerves — including within our own brain. The phenomenon is referred to as "biomagnetism." Since other plants have action potentials, they may also generate biomagnetism, though less research has been done on them.

It's to other plants that the attention of the JSU team now turns, as they go looking for even smaller magnetic charges from other species. In addition to providing new understanding of nature's use of electricity, non-invasive detection technologies such as the one employed by the group could one day be utilized for more insightful monitoring of crops as they respond to thermal, pest, and chemical influences.

Animal magnetism: Bacteria may help creatures sense Earth's magnetic fields

An intriguing theory explains animals' magnetic sense.

Credit: PedroNevesDesign/designer_an/Shutterstock/Big Think
  • Some animals can navigate via magnetism, though scientists aren't sure how.
  • Research shows that some of these animals contain magnetotactic bacteria.
  • These bacteria align themselves along the magnetic field's grid lines.
Keep reading Show less

For starlet sea anemones, more food means more arms

A new study finds that starlet sea anemones have the unique ability to grow more tentacles when they've got more to eat.

Credit: Smithsonian Environmental Research Center/Wikimedia
  • These anemones belong to the Cnidaria phylum that continues developing through its lifespan.
  • The starlet sea anemone may grow as many as 24 tentacles, providing there's enough food.
  • When deprived of the chance to reproduce, they also grow more tentacles.
Keep reading Show less

Study finds the real reason you get goosebumps

No, its not just to keep you warm with hair you don't have.

By Flystock/Shutterstock
  • A new study suggests that goosebumps are part of a larger system that not only keeps us warm, but also helps hair to heal.
  • The sympathetic nerve system reacts to cold air with goose skin. If it stays on long enough, it orders new hair growth.
  • The authors note that other, currently unknown, connections between this system and other parts of the body are likely to exist.
Keep reading Show less
Quantcast