A new minimoon is headed towards Earth, and it’s not natural
Astronomers spot an object heading into Earth orbit.
Minimoons
<p>Scientists have confirmed just two prior minimoons. One was <a href="https://en.wikipedia.org/wiki/2006_RH120" target="_blank">2006 RH120</a>, which orbited us from September 2006 to June 2007. The other was <a href="https://en.wikipedia.org/wiki/2020_CD3" target="_blank">2020 CD3</a>, which got stuck in the 2015–2016 timeframe, and is believed to gotten away in May 2020.</p><p>2020 SO, the new kid on the block, is expected to arrive in October 2020 and pop out of orbit in May 2021.</p><div id="37962" class="rm-shortcode" data-rm-shortcode-id="f4c0fc8a2cba6536ea4cd960ebed3e6e"><blockquote class="twitter-tweet twitter-custom-tweet" data-twitter-tweet-id="1307729521869611008" data-partner="rebelmouse"><div style="margin:1em 0">Asteroid 2020 SO may get captured by Earth from Oct 2020 - May 2021. Current nominal trajectory shows shows capture… https://t.co/F5utxRvN6Z</div> — Tony Dunn (@Tony Dunn)<a href="https://twitter.com/tony873004/statuses/1307729521869611008">1600621989.0</a></blockquote></div>Identifying 2020 SO
<p>The first clue 2020 SO isn't your ordinary asteroid is its exceptionally low velocity. It's traveling much more slowly that a typical asteroid — their <a href="https://www.lpi.usra.edu/exploration/training/illustrations/craterMechanics/" target="_blank">average rate of travel</a> <a href="https://www.lpi.usra.edu/exploration/training/illustrations/craterMechanics/" target="_blank" rel="noopener noreferrer"></a>is 18 kilometers (58,000 feet) per second. Even <a href="https://en.wikipedia.org/wiki/Moon_rock" target="_blank">moon rocks</a> sent careening into Earth orbit by impacts on the lunar surface outpace pokey 2020 SO.</p><p>For another thing, 2020 SO has an orbital path very similar to Earth's, lasting about one Earth year. It's also just slightly less circular than our own orbit, from which it's barely tilted off-axis.</p><p>So, what is it? <a href="https://cneos.jpl.nasa.gov/ca/" target="_blank">NASA estimates</a> that the object has dimensions very reminiscent of a discarded Centaur rocket stage from the <a href="https://en.wikipedia.org/wiki/Surveyor_2" target="_blank" rel="noopener noreferrer">Surveyor 2 mission</a> that landed an unmanned craft on the moon. Back in the day, rocket stages were jettisoned as craft were aimed toward their desired position. This stuff, if released high enough, remains in space. It appears that this Centaur rocket, launched in September 1966, is now making its way back homeward, at least for a little bit.</p><p>When 2020 SO arrives at its closest point in December, the rocket is expected to be about 50,000 kilometers from Earth. Its next closest approach is much further: 220,000 kilometers, in February 2021.</p><img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNDQzMDk3NC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyODg1MTQ1MX0.HGknDwqp0GmeuczKY_AS7vrPG7KMFUc_XO95tNoI2xo/img.jpg?width=980" id="e5cda" class="rm-shortcode" data-rm-shortcode-id="85eb1f790d8c3ee5b261f7ba13eaa5e1" data-rm-shortcode-name="rebelmouse-image" alt="Centaur rocket stage" data-width="1400" data-height="2032" />Centaur rocket stage
Credit: NASA/Wikimedia
What we may be able to learn
<p>Earthly space programs being as young as they are, scientists would love to know what's happened to our rocket during a half century in space.</p><p>While 2020 SO won't get close enough to drop into our atmosphere, its slow progress has scientists hopeful that they'll still get some kind of a decent look at it.</p><p>Spectroscopy may be able to reveal what the rocket's surface is like now — has any of its paint survived, for example? Of course, being out in space, it's likely to have been hit by lots of dust and micrometeorites, so the current state of its surfaces is also of interest. Experts are curious to know how reflective the rocket is at this point, valuable information that can help planners of future long-term missions anticipate how well a craft out in space for extended periods will remain able to reflect sunlight.</p>Closest images ever taken of the sun reveal "nanoflares"
The Sun, as its never been seen before.
How to take a picture of a giant ball of fire
<p>Situated 77,000,000 kilometers (48,000,000 miles) from Earth, roughly halfway to the Sun, the Solar Orbiter's cameras have taken high-quality images from a closer vantage point than any camera ever. More importantly, they can take pictures in ultraviolet light, which is highly filtered by Earth's atmosphere and challenging to do as well without being in space.</p><p>The images, seen below, are stunning.</p>The arrow points to a "nanoflare" approximately 700 km across.
SOLAR ORBITER/EUI TEAM (ESA & NASA)
These images show the sun's appearance at a wavelength of 17 nanometers, which is in the extreme ultraviolet region of the electromagnetic spectrum. Images at this wavelength reveal the upper atmosphere of the sun, the corona, with a temperature of around one million degrees. (quoted from https://phys.org/news/2020-07-close-ups-sun.html)
Credit: Solar Orbiter/EUI Team (ESA & NASA); CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL
Ask an astronomer: What makes neutron stars so special?
Astrophysicist Michelle Thaller talks ISS and why NICER is so important.
- Being outside of Earth's atmosphere while also being able to look down on the planet is both a challenge and a unique benefit for astronauts conducting important and innovative experiments aboard the International Space Station.
- NASA astrophysicist Michelle Thaller explains why one such project, known as NICER (Neutron star Interior Composition Explorer), is "one of the most amazing discoveries of the last year."
- Researchers used x-ray light data from NICER to map the surface of neutrons (the spinning remnants of dead stars 10-50 times the mass of our sun). Thaller explains how this data can be used to create a clock more accurate than any on Earth, as well as a GPS device that can be used anywhere in the galaxy.
- Astronaut Garrett Reisman took in countless indescribably beautiful views while he lived in space. But most shocking, he says, was observing the thinness of Earth's atmosphere.
- You can compare the thickness of the atmosphere to the diameter of Earth to the skin on an apple, or the shell of an egg. It's incredibly thin and shows just how seemingly fragile our planet is.
- But to put this into perspective, whereas the atmosphere reaches a height of 300,000 feet from Earth's surface, the deepest part of the ocean only reaches 35,000 feet, ten times thinner than Earth's atmosphere. Everything we experience on Earth, from sea to sky, exists on just a tiny slice of precious surface coating.
Space exploration is the ultimate plan B. Here’s why.
Why did the dinosaurs go extinct? Because they didn't have a space program.
- Space exploration is more than just the ultimate adventure, our study and investigation of space yields great scientific rewards, says astronaut Garrett Reisman.
- Earth is wonderful, but it won't last forever, so it's important that we maintain a big picture view to ensure the survival of the human species.
- Exploring space is our ticket to "the ultimate plan B," according to Reisman. If there were to occur a mass extinction event on Earth, the humans that inhabit another planet in our solar system will be the only hope of human survival.
