The universe works like a huge human brain, discover scientists
A new study found similarities between the human brain and the cosmic network of galaxies.
- A new study finds similarities between the structures and processes of the human brain and the cosmic web.
- The research was carried out by an astrophysicist and a neurosurgeon.
- The two systems are vastly different in size but resemble each other in several key areas.
Section of the human brain (left) and a simulated section of the cosmos (right).
Credit: University of Bologna
Michio Kaku: Consciousness Can be Quantified | Big Think
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="cffa17161bfc4dd6dbee720749452fdc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/0GS2rxROcPo?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span><p><em>"Believe it or not, sitting on our shoulders is the most complex object that Mother Nature has created in the known universe. </em><em>You have to go at least 24 trillion miles to the nearest star to find a planet that may have life and may have intelligence. And yet our brain only consumes about 20-30 watts of power and yet it performs calculations better than any large supercomputer." </em>- Michio Kaku</p>Astrophysicists reconstruct the Milky Way's family tree
A team of astrophysicists used AI to figure out which clusters of stars merged to become our galaxy.
- Scientists use artificial intelligence to reconstruct the globular clusters that merged to form our Milky Way galaxy.
- The researchers ran simulations on a neural network to discover the history and details about our galactic ancestors.
- They found that a collision with a previous galaxy called "Kraken" was so powerful it transformed the Milky Way.
Check out how E-MOSAICS simulations shows the formation of a galaxy like the Milky Way:
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="9501816f4e3f2dea501e300adccb7ab3"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/v-v5bSnDZs8?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Credit: D. Kruijssen / Heidelberg University
<p><em>Galaxy merger tree of the Milky Way. The main progenitor of the Milky Way is shown by the trunk of the tree, with color representing its stellar mass. Black lines show the five identified satellites. Grey dotted lines demonstrate other mergers that the Milky Way likely underwent, but could not be connected to a particular progenitor. From left to right, the six images at the top list the identified progenitor galaxies: Sagittarius, Sequoia, Kraken, the Milky Way's Main progenitor, the progenitor of the Helmi streams, and Gaia-Enceladus-Sausage.</em></p>Gamma-ray space telescope study may have spotted dark matter
New study of gamma rays and gravitational lensing points to the possible presence of dark matter.
- Analyzing data from the Fermi Gamma-ray Space Telescope, researchers find hints of dark matter.
- The scientists looked to spot a correlation between gravitational lensing and gamma rays.
- Future release of data can pinpoint whether the dark matter is really responsible for observed effects.
The Difference Between Quasars, Blazars, Pulsars and Radio Galaxies
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8c4a44762134cae06132534b51a15a65"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/Kc_d_sNBuN8?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>An overlap of gravitational lenses and gamma-ray signals could indicate the presence of dark matter.
Credit: D. Gruen/SLAC/Stanford; C. Chang/University of Chicago; A. Drlica-Wagner/Fermilab
There is no dark matter. Instead, information has mass, physicist says
Is information the fifth form of matter?
- Researchers have been trying for over 60 years to detect dark matter.
- There are many theories about it, but none are supported by evidence.
- The mass-energy-information equivalence principle combines several theories to offer an alternative to dark matter.
The “discovery” of dark matter
<p>We can tell how much matter is in the universe by the <a href="https://www.space.com/20930-dark-matter.html" target="_blank">motions of the stars</a>. In the1920s, physicists attempting to do so discovered a discrepancy and concluded that there must be more matter in the universe than is detectable. How can this be? </p><p>In 1933, Swiss astronomer Fritz Zwicky, while observing the motion of galaxies in the <a href="https://www.space.com/vera-rubin.html" target="_blank">Coma Cluster</a>, began wondering what kept them together. There wasn't enough mass to keep the galaxies from flying apart. Zwicky proposed that some kind of dark matter provided cohesion. But since he had no evidence, his theory was quickly dismissed. </p><p>Then, in 1968, astronomer Vera Rubin made a similar discovery. She was studying the Andromeda Galaxy at Kitt Peak Observatory in the mountains of southern Arizona when she came across something that puzzled her. Rubin was examining Andromeda's rotation curve, or the speed at which the stars around the center rotate, and realized that the stars on the outer edges moved at the exact same rate as those at the interior, violating <a href="http://www.astronomy.com/news/2016/10/vera-rubin" target="_blank">Newton's laws of motion</a>. This meant there was more matter in the galaxy than was detectable. Her punch card readouts are today considered the first evidence of the existence of dark matter. </p><p>Many other galaxies were studied throughout the '70s. In each case, the same phenomenon was observed. Today, dark matter is thought to comprise up to 27% of the universe. "Normal" or baryonic matter makes up just 5%. That's the stuff we can detect. Dark energy, which we can't detect either, makes up 68%. </p><p>Dark energy is what accounts for the Hubble Constant, or the rate at which the universe is expanding. Dark matter on the other hand, affects how "normal" matter clumps together. It stabilizes galaxy clusters. It also affects the shape of galaxies, their rotation curves, and how stars move within them. Dark matter even affects how galaxies influence one another.</p>Leading theories on dark matter
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjU5ODExNS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzOTY4MzM0Nn0.3AXqxP2fpr37ZFWTbMp1lYrLt2VYVAbT7BngypUYfoc/img.jpg?width=980" id="ccb58" class="rm-shortcode" data-rm-shortcode-id="984bda92c8dfd2a770d107e403c3b66c" data-rm-shortcode-name="rebelmouse-image" />NASA writes: 'This graphic represents a slice of the spider-web-like structure of the universe, called the "cosmic web." These great filaments are made largely of dark matter located in the space between galaxies.'
Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder)
<p>Since the '70s, astronomers and physicists have been unable to identify any evidence of dark matter. One theory is it's all tied up in space-bound objects called <a href="https://imagine.gsfc.nasa.gov/educators/galaxies/imagine/dark_matter.html" target="_blank">MACHOs</a> (Massive Compact Halo Objects). These include black holes, supermassive black holes, <a href="https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy" target="_blank">brown dwarfs</a>, and neutron stars.</p><p>Another theory is that dark matter is made up of a type of non-baryonic matter, called WIMPS (Weakly Interacting Massive Particles). Baryonic matter is the kind made up of baryons, such as protons and neutrons and everything composed of them, which is anything with an <a href="http://astronomy.swin.edu.au/cosmos/B/Baryonic+Matter" target="_blank">atomic nucleus</a>. Electrons, neutrinos, muons, and tau particles aren't baryons, however, but a class of particles called <a href="http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/lepton.html" target="_blank">leptons</a>. Even though the (hypothetical) WIMPS would have ten to a hundred times the mass of a proton, their interactions with normal matter would be weak, making them hard to detect. </p><p>Then there are those aforementioned neutrinos. Did you know that giant streams of them pass from the Sun through the Earth each day, without us ever noticing? They're the focus of another theory that says that neutral neutrinos, that only interact with normal matter through gravity, are what dark matter is comprised of. Other candidates include two theoretical particles, the neutral axion and the uncharged photino.</p><p>Now, one theoretical physicist posits an even more radical notion. What if dark matter didn't exist at all? Dr. Melvin Vopson of the University of Portsmouth, in the UK, has a hypothesis he calls the mass-energy-information equivalence. It states that information is the fundamental building block of the universe, and it has mass. This accounts for the missing mass within galaxies, thus eliminating the hypothesis of dark matter entirely.</p>Information theory
<p>To be clear, the idea that information is an <a href="https://bigthink.com/philip-perry/the-basis-of-the-universe-may-not-be-energy-or-matter-but-information" target="_self">essential building block</a> of the universe isn't new. Classical Information Theory was first posited by Claude Elwood Shannon, the <a href="https://www.bell-labs.com/claude-shannon/" target="_blank">"father of the digital age"</a> in the mid-20th century. The mathematician and engineer, well-known in scientific circles—but not so much outside of them, had a stroke of genius back in 1940. He realized that Boolean algebra coincided perfectly with telephone switching circuits. Soon, he proved that mathematics could be employed to design electrical systems. </p><p>Shannon was hired at Bell Labs to figure out how to transfer information over a system of wires. He wrote the bible on using mathematics to set up communication systems, thereby laying the foundation for the digital age. Shannon was also the first to define one unit of information as a bit. </p><p>There was perhaps no greater proponent of information theory than another unsung paragon of science, <a href="https://futurism.com/john-wheelers-participatory-universe" target="_blank">John Archibald Wheeler</a>. Wheeler was part of the Manhattan Project, worked out the "S-Matrix" with Niels Bohr and helped Einstein develop a unified theory of physics. In his later years, he proclaimed, "Everything is information." Then he went about exploring connections between quantum mechanics and information theory. </p><p>He also coined the phrase "it from bit" or that every particle in the universe emanates from the information locked inside it. At the Santa Fe Institute in 1989, Wheeler announced that everything, from particles to forces to the fabric of spacetime itself "… derives its function, its meaning, its very existence entirely … from the apparatus-elicited answers to yes-or-no questions, binary choices, <a href="https://blogs.scientificamerican.com/cross-check/why-information-cant-be-the-basis-of-reality/" target="_blank">bits</a>."</p>Part Einstein, part Landauer
<p>Vopson takes this notion one step further. He says that not only is information the essential unit of the universe but also that it is energy and has mass. To support this claim, he unifies and coordinates special relativity with the <a href="https://physics.aps.org/articles/v11/49" target="_blank">Landauer Principle</a>. The latter is named after Rolf Landauer. In 1961, he predicted that erasing even one bit of information would release a tiny amount of heat, a figure which he calculated. Landauer said this proves information is more than just a mathematical quantity. This connects information to energy. Through experimental testing over the years, the Landauer Principle has held up.</p><p>Vopson says, "He [Landauer] first identified the link between thermodynamics and information by postulating that logical irreversibility of a computational process implies physical irreversibility." This indicates that <a href="https://aip.scitation.org/doi/10.1063/1.5123794" target="_blank">information is physical</a>, Vopson says, and demonstrates the link between information theory and <a href="https://www.nature.com/articles/nature10872" target="_blank">thermodynamics</a>. </p><p>In Vopson's theory, information, once created has "finite and quantifiable mass." It so far applies only to digital systems, but could very well apply to analogue and biological ones too, and even quantum or relativistic-moving systems. "Relativity and quantum mechanics are possible future directions of the mass-energy-information equivalence principle," he says. </p><p>In the paper published in the journal <a href="https://aip.scitation.org/doi/10.1063/1.5123794" target="_blank"><em>AIP Advances</em>,</a> Vopson outlines the mathematical basis for his hypothesis. "I am the first to propose the mechanism and the physics by which information acquires mass," he said, "as well as to formulate this powerful principle and to propose a possible experiment to test it."</p>The fifth state of matter
<p>To measure the mass of digital information, you start with an empty data storage device. Next, you measure its total mass with a highly sensitive measuring apparatus. Then, you fill it and determine its mass. Next, you erase one file and evaluate it again. The trouble is, the "ultra-accurate mass measurement" device the paper describes doesn't exist yet. This would be an <a href="https://aip.scitation.org/doi/10.1063/1.5126530" target="_blank">interferometer</a>, something similar to <a href="https://www.ligo.caltech.edu/page/what-is-ligo" target="_blank">LIGO</a>. Or perhaps an ultrasensitive weighing machine akin to a <a href="https://www.nist.gov/si-redefinition/kilogram/kilogram-kibble-balance" target="_blank">Kibble balance</a>.</p><p>"Currently, I am in the process of applying for a small grant, with the main objective of designing such an experiment, followed by calculations to check if detection of these small mass changes is even possible," Vopson says. "Assuming the grant is successful and the estimates are positive, then a larger international consortium could be formed to undertake the construction of the instrument." He added, "This is not a workbench laboratory experiment, and it would most likely be a large and costly facility." If eventually proved correct, Vopson will have discovered the fifth form of matter. </p><p>So, what's the connection to dark matter? Vopson says, "M.P. Gough published an article in <a href="https://www.mdpi.com/1099-4300/10/3/150" target="_blank">2008</a> in which he worked out … the number of bits of information that the visible universe would contain to make up all the missing dark matter. It appears that my estimates of information bit content of the universe are very close to his estimates." </p>Mystery effect speeds up the universe – not dark energy, says study
Russian astrophysicists propose the Casimir Effect causes the universe's expansion to accelerate.
- Astrophysicists from Russia propose a theory that says dark energy doesn't exist.
- Instead, the scientists think the Casimir Effect creates repulsion.
- This effect causes the expansion of the universe to accelerate.
Gravity Should Slow the Expanding Universe, but Dark Energy Is Speeding It ...
<div class="rm-shortcode" data-media_id="TXFqpm0M" data-player_id="FvQKszTI" data-rm-shortcode-id="e242a06f4b4464e0cffae45d5142d2ea"> <div id="botr_TXFqpm0M_FvQKszTI_div" class="jwplayer-media" data-jwplayer-video-src="https://content.jwplatform.com/players/TXFqpm0M-FvQKszTI.js"> <img src="https://cdn.jwplayer.com/thumbs/TXFqpm0M-1920.jpg" class="jwplayer-media-preview" /> </div> <script src="https://content.jwplatform.com/players/TXFqpm0M-FvQKszTI.js"></script> </div>