Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Time To Update Science's Mobile Army of Metaphors?

“Scientists should think like poets,” says E.O. Wilson, because new metaphors mobilize new thinking.

Illustration by Julia Suits, The New Yorker cartoonist & author of The Extraordinary Catalog of Peculiar Inventions


1. Nietzsche called truth “a mobile army of metaphors." That’s no less true in science. (Like turtles, metaphors go all the way down.) Can we mobilize other equation-defying language resources to serve science?

2. The thought-structuring thinking-fashion-shifting work of science metaphors is showcased in great essays by Siddhartha Mukherjee (first, second) and Kevin Mitchell (here).

3. In “Cancer’s Invasion Equation” Mukherjee focuses on the invasion—recasting cancer as an ecology-disrupting invader—but the equation part can mask powerful, potentially misleading, metaphorizing.

4.“The toggle-switch model of disease” yields to “seed-and-soil” thinking—local tissue ecology can enable cancer seeds to thrive or be throttled (swapping relational-ecological for technomorphic-reductionist metaphors).

5. “Cancer is no more a disease of cells than a traffic jam is a disease of cars,” declared DW Smithers). Studying cars alone won’t work—they’re necessary, but not sufficient—jams are higher-level relational contextual phenomena. Likewise gene-level thinking can “mistake the music for the piano.”

6. Smithers felt “lacerated by Occam’s razor,” but Occam-preoccupied thinking can cut against biology’s grain—onions have more DNA per cell than you.

7. Like jam-resilient cities, biochemical “circuitry” often offers high-redundancy routes (multiple “sufficient but not necessary” paths and pathologies).

8. Mukherjee grumbles, “Ecologists… talk about webs of nutrition, predation, climate…[with] complex feedback loops, all context-dependent. To them, invasion is an equation, even a set of simultaneous equations.”

9. That equation-as-best-way-to-know metaphor can limit or mislead. The algebraic moves of equations thrive in reductionist, essentialist domains (physics, engineering) where every X’s reliably isolatable intrinsic traits beget stable behaviors.

10. But, as Mitchell notes, biology’s basic laws differ. They’re emergent, process-oriented, relational, systemic, with polysemic parameters often only interpretable relative to complex contexts: whole cells, tissue ecologies, organisms… you must zoom out to the proper level

11. Mukherjee’s second essay reverts to human-tech metaphors (cardiologists = plumbers, oncologists = exterminators). A single inflammation-influencing molecule’s role in heart disease and cancer is like a fuse-box switch that impacts two disparate disease circuits.

12. Our 20,000+ “gene-switches” aren’t monofunctional on/off elements. Biochemistry’s players are ensemble casts (one mutation can re-orchestrate hundreds of genes). As with musical notes or words, it’s specific sequences that count. The meanings (effects) of genes mostly emerge in higher-level structures—like tunes or texts, requiring precise sequences, synchronization, syntax, and grammar.

13. Biology’s patterns—molecular melodies played on 20,000 keys, cytoplasmic scripts or cell-spanning sentences in a 20,000-word vocabulary, choreographed across trillions of cells—challenge current concepts, vocabulary, metaphors, and methods.

14. Mukherjee mentions “gene-expression signatures,” but can word-count signatures explicate text? We can’t just jettison “gene grammars,“ or cellular syntax without leaking meaning.

15. Grammars express richer part-to-whole relationships (recipe-like algorithmic patterns) than geometric/algebraic essentialism. “What Euclid is to Europe, Panini is to India” (Staal). Panini’s rigorous Sanskrit grammar shaped less algebra-and-geometry-intoxicated minds.

16. Misleading metaphors can hide in mathematical methods—standard stats presume heap-like additive causal factors (stats still can’t decode language’s ecosystem).

17. E.O. Wilson says “scientists should think like poets”—new metaphors mobilize new thinking, but other language tools can provide parts-of-speech models for parts-of-reality interactions.

 

Illustration by Julia SuitsThe New Yorker cartoonist & author of The Extraordinary Catalog of Peculiar Inventions

Live tomorrow! Unfiltered lessons of a female entrepreneur

Join Pulitzer Prize-winning reporter and best-selling author Charles Duhigg as he interviews Victoria Montgomery Brown, co-founder and CEO of Big Think, live at 1pm EDT tomorrow.

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Improving Olympic performance with asthma drugs?

A study looks at the performance benefits delivered by asthma drugs when they're taken by athletes who don't have asthma.

Image source: sumroeng chinnapan/Shutterstock
Culture & Religion
  • One on hand, the most common health condition among Olympic athletes is asthma. On the other, asthmatic athletes regularly outperform their non-asthmatic counterparts.
  • A new study assesses the performance-enhancement effects of asthma medication for non-asthmatics.
  • The analysis looks at the effects of both allowed and banned asthma medications.

Keep reading Show less

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less
Mind & Brain

Why are we fascinated by true crime stories?

Several experts have weighed in on our sometimes morbid curiosity and fascination with true crime.

Scroll down to load more…
Quantcast