Does Life Work Like a Car Engine With Souped-up Complexity?

Does life work like our technology? Is life under the hood just like a car sporting souped-up complexity? 

Illustration by Julia Suits, author of The Extraordinary Catalog of Peculiar Inventions, and The New Yorker cartoonist.
Illustration by Julia Suits, author of The Extraordinary Catalog of Peculiar Inventions, and The New Yorker cartoonist.


1. Does life work like our machines? Like cars sporting souped-up complexity? That tempting template hampers our tinkering under life’s hood.

2. E. coli’s single-celled life is “like a self-building, self-multiplying, self-healing race car that can run on kerosene [or] Coca-Cola,” says Andreas Wagner (Arrival of the Fittest: How Nature Innovates).

3. But cells have changing parts list. They’re like cars that build and recycle sparkplugs every firing cycle. Life builds umpteen temporary components, choreographing flashmob-like molecular fabricators for its transient machinery.

4. E. coli utilizes life’s ~60 molecular “building blocks,” its 4,000 - 5,500 genes orchestrate 1,300 densely interwoven fluctuating biochemical reaction circuits—>a dynamic complexity utterly unlike our machines.

5. Each eukaryotic cell is vastly more complex than our hottest tech. “No self-respecting human engineer” would devise such seemingly disorderly, inefficient, complexity.

6. "Nature doesn't just tolerate disorder. It needs some disorder” (Wagner). And complexity.

7. Biology lives in a region of reality that resists Occam’s Razor—life needs complexity-enabled robustness.

8. Robust solutions are like streetscapes offering many routes around roadblocks. Life’s biochemical circuits leverage similar re-routable-ness. Enabling E. coli to thrive on 80 different fuels (=diverse environments).

9. Why would our ~19,000 (microbiome supplemented) genes occupy ~2% of our DNA?

10. Partly because genes are like guitars, uselessly silent unless played (“mere presence of a guitar in your bedroom doesn't make you Slash”—Ed Yong). Detection ≠ usage details (≠ roles played ≠ where).  

11. Our 30 trillion cells each, millions of times daily, unpack and play thousands of genes, exactly on cue.

12. Those cues often aren’t simple on-off switches, they’re tuned to the logic of many signals. For instance, the gene for crystallin has 5 regulators, each with off, low, medium, and high settings.

13. And regulators can regulate other regulators forming daisy chains and cascades (twiddling “the knobs” of hundreds of genes). In this symphony each instrument can be an orchestra of genes.

14. Our 98% non-gene DNA has ~3 million control elements, ~150,000 active per cell type.

15. This mind-boggling dynamic complexity means machine-like (stable parts-listed) thinking can mislead.

16. The genes/parts usage patterns of our cells isn’t known—>a “Human Cell Atlas” effort is underway.

17. Gene-editing tools like CRISPR “will supposedly hack diseases out of our DNA, but… how do we know what to edit?” In which cell types? +Gene products often ≠ monofunctional (eye-lens crystallin is active in the pancreas and nervous system).

18. Indeed, “editing is a bit of a misnomer." CRISPR is like cut-and-paste on a vastly complex dynamic polysemic text or symphony or movie, where only snippets of the plot are known.

19. An Occam-preoccupied machinelike mindset can skew research, e.g. neuroscientists seeking “a gene for psychosis” or disease “neurosignatures.”

20. Few traits or illnesses are monogenetic. Few will be easily “editable.” Few illnesses will likely have simple (error code) signatures.

21. We’re babystep beginners at the dynamic logic and chemical semantics of biology’s teeming transient molecular machinery.

 

Illustration by Julia Suits, author of The Extraordinary Catalog of Peculiar Inventions, and The New Yorker cartoonist.

Golden blood: The rarest blood in the world

We explore the history of blood types and how they are classified to find out what makes the Rh-null type important to science and dangerous for those who live with it.

What is the rarest blood type?

Abid Katib/Getty Images
Surprising Science
  • Fewer than 50 people worldwide have 'golden blood' — or Rh-null.
  • Blood is considered Rh-null if it lacks all of the 61 possible antigens in the Rh system.
  • It's also very dangerous to live with this blood type, as so few people have it.
Keep reading Show less

How space debris created the world’s largest garbage dump

Since 1957, the world's space agencies have been polluting the space above us with countless pieces of junk, threatening our technological infrastructure and ability to venture deeper into space.

Space debris orbiting Earth

Framestock via Adobe Stock
Technology & Innovation
  • Space debris is any human-made object that's currently orbiting Earth.
  • When space debris collides with other space debris, it can create thousands more pieces of junk, a dangerous phenomenon known as the Kessler syndrome.
  • Radical solutions are being proposed to fix the problem, some of which just might work. (See the video embedded toward the end of the article.)
Keep reading Show less

Looking for something? A team at MIT develop a robot that sees through walls

It uses radio waves to pinpoint items, even when they're hidden from view.

TORU YAMANAKA/AFP via Getty Images
Technology & Innovation
In recent years, robots have gained artificial vision, touch, and even smell.
Keep reading Show less
Quantcast