The Book of Why: How a 'causal revolution' is shaking up science

A much-needed "causal revolution" has arrived in Judea Pearl's 'The Book of Why'. But despite vast improvements over "trad stats", there's cause for concern over logic-losing numbers.

1. The Book of Why brings a “new science” of causes. Judea Pearl’s causology graphically dispels deep-seated statistical confusion (but heterogeneity-hiding abstractions and logic-losing numbers lurk).


2. Pearl updates old correlation-isn’t-causation wisdom with “causal questions can never be answered from data alone.” Sorry, Big Data (and A.I.) fans: “No causes in, no causes out” (Nancy Cartwright).

3. Because many causal processes can produce the same data/stats, it’s evolutionarily fitting that “the bulk of human knowledge is organized around causal, not probabilistic relationships.” Crucially, Pearl grasps that “the grammar of probability [& stats]… is insufficient.”

4. But trad stats isn’t causal “model-free,” it implicitly imposes “causal salad” models—independent factors, jumbled, simple additive effects (widely method-and-tool presumed ... often utterly unrealistic).

5. “Causal revolution” methods enable richer logic than trad-stats syntax permits (for instance, arrowed-line causal structure diagrams enhance non-directional algebra).

6. Paradoxically, precise-seeming numbers can generate logic-fogging forces. The following reminders might counter rote-method-produced logic-losing numbers.

7. Causes of changes in X, need not be causes of X. That’s often obvious in known-causality cases (pills lowering cholesterol aren’t its cause) but routinely obfuscated in analysis-of-variance research. Correlating variation percentages to factor Y often doesn’t “explain” Y’s role (+see “red brake risk”). And stats factor choice can reverse effects (John Ioannidis).

8. Analysis-of-variance training encourages fallacy-of-division miscalculations. Many phenomena are emergently co-caused and resist meaningful decomposition. What % of car speed is “caused’ by engine or fuel? What % of drumming is “caused” by drum or drummer? What % of soup is “caused” by its recipe?

9. Akin to widespread statistical-significance misunderstandings, lax phrasing like “control for” and “held constant” spurs math-plausible but impossible-in-practice manipulations (~“rigor distoris”).

10. Many phenomena aren’t causally monolithic “natural kinds.” They evade classic causal-logic categories like “necessary and sufficient,” by exhibiting “unnecessary and sufficient” cause. They’re multi-etiology/route/recipe mixed bags (see Eiko Fried’s 10,377 paths to Major Depression).

11. Mixed types mean stats-scrambling risks: fruitless apples-to-oranges stats like average humans have 1 testicle + 1 ovary.

12. Pearl fears trad-stats-centric probability-intoxicated thinking hides its staticness, whereas cause-driven approaches illuminate changing scenarios. Causality always beats stats (which encode unnovel cases). Known causal-composition rules (your system’s syntax) make novel (stats-defying) cases solvable.

13. “Causal revolution” tools overcome severe trad-stats limits, but they retain rush-to-the-numbers risks (is everything relevant squeezable into path-coefficients?) and type-mixing abstractions (e.g., Pearl’s diagram lines treat them equivalently but causes work differently in physics versus social systems).

14. “Cause” is a suitcase concept, requiring a richer causal-role vocabulary. Recall Aristotle’s cause kinds—material, formal, proximate, ultimate. Their qualitative distinctness ensures quantitative incomparability. They resist squashing into a single number (ditto needed Aristotle-extending roles).  

15. Causal distance always counts. Intermediate-step unknowns mean iffier logic/numbers (e.g., genes typically exert many-causal-steps-removed highly co-causal effects).

16. Always ask: Is a single causal structure warranted? Or casual stability? Or close-enough causal closure? Are system components (roughly) mono-responsive?

17. Skilled practitioners respect their tools’ limits. A thinking-toolkit of context-matched rule-of-thumb maxims might counter rote-cranked-out methods and heterogeneity-hiding logic-losing numbers.

 

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

Hyperdimensional computing discovered to help AI robots create memories

New computing theory allows artificial intelligences to store memories.

Credit: Perception and Robotics Group, University of Maryland.
Technology & Innovation
  • To become autonomous, robots need to perceive the world around them and move at the same time.
  • Researchers create a theory of hyperdimensional computing to help store robot movement in high-dimensional vectors.
  • This improvement in perception will allow artificial intelligences to create memories.
Keep reading Show less

10 new things we’ve learned about death

If you don't want to know anything about your death, consider this your spoiler warning.

Culture & Religion
  • For centuries cultures have personified death to give this terrifying mystery a familiar face.
  • Modern science has demystified death by divulging its biological processes, yet many questions remain.
  • Studying death is not meant to be a morbid reminder of a cruel fate, but a way to improve the lives of the living.
Keep reading Show less

Why inequality is a ticking time bomb – for poor and rich

Riots may ensue as more poor Americans recognize their "miserable" long-term prospects.

Videos
  • How bad is wealth inequality in the United States? About 1 percent of Americans hold 80 percent of the money.
  • In the United States, the correlation between the income of parents and the income of their children when they grow up is higher than in any other country in the world.
  • One of the big underlying reasons for poverty is receiving a crummy education, which in turn leads to crummy jobs. When people recognize their miserable long-term prospects, they are more likely to partake in riots.