The Book of Why: How a 'causal revolution' is shaking up science

A much-needed "causal revolution" has arrived in Judea Pearl's 'The Book of Why'. But despite vast improvements over "trad stats", there's cause for concern over logic-losing numbers.

Illustration by Julia Suits, author of The Extraordinary Catalog of Peculiar Inventions, and The New Yorker cartoonist.
Illustration by Julia Suits, author of The Extraordinary Catalog of Peculiar Inventions, and The New Yorker cartoonist.

1. The Book of Why brings a “new science” of causes. Judea Pearl’s causology graphically dispels deep-seated statistical confusion (but heterogeneity-hiding abstractions and logic-losing numbers lurk).

2. Pearl updates old correlation-isn’t-causation wisdom with “causal questions can never be answered from data alone.” Sorry, Big Data (and A.I.) fans: “No causes in, no causes out” (Nancy Cartwright).

3. Because many causal processes can produce the same data/stats, it’s evolutionarily fitting that “the bulk of human knowledge is organized around causal, not probabilistic relationships.” Crucially, Pearl grasps that “the grammar of probability [& stats]… is insufficient.”

4. But trad stats isn’t causal “model-free,” it implicitly imposes “causal salad” models—independent factors, jumbled, simple additive effects (widely method-and-tool presumed ... often utterly unrealistic).

5. “Causal revolution” methods enable richer logic than trad-stats syntax permits (for instance, arrowed-line causal structure diagrams enhance non-directional algebra).

6. Paradoxically, precise-seeming numbers can generate logic-fogging forces. The following reminders might counter rote-method-produced logic-losing numbers.

7. Causes of changes in X, need not be causes of X. That’s often obvious in known-causality cases (pills lowering cholesterol aren’t its cause) but routinely obfuscated in analysis-of-variance research. Correlating variation percentages to factor Y often doesn’t “explain” Y’s role (+see “red brake risk”). And stats factor choice can reverse effects (John Ioannidis).

8. Analysis-of-variance training encourages fallacy-of-division miscalculations. Many phenomena are emergently co-caused and resist meaningful decomposition. What % of car speed is “caused’ by engine or fuel? What % of drumming is “caused” by drum or drummer? What % of soup is “caused” by its recipe?

9. Akin to widespread statistical-significance misunderstandings, lax phrasing like “control for” and “held constant” spurs math-plausible but impossible-in-practice manipulations (~“rigor distoris”).

10. Many phenomena aren’t causally monolithic “natural kinds.” They evade classic causal-logic categories like “necessary and sufficient,” by exhibiting “unnecessary and sufficient” cause. They’re multi-etiology/route/recipe mixed bags (see Eiko Fried’s 10,377 paths to Major Depression).

11. Mixed types mean stats-scrambling risks: fruitless apples-to-oranges stats like average humans have 1 testicle + 1 ovary.

12. Pearl fears trad-stats-centric probability-intoxicated thinking hides its staticness, whereas cause-driven approaches illuminate changing scenarios. Causality always beats stats (which encode unnovel cases). Known causal-composition rules (your system’s syntax) make novel (stats-defying) cases solvable.

13. “Causal revolution” tools overcome severe trad-stats limits, but they retain rush-to-the-numbers risks (is everything relevant squeezable into path-coefficients?) and type-mixing abstractions (e.g., Pearl’s diagram lines treat them equivalently but causes work differently in physics versus social systems).

14. “Cause” is a suitcase concept, requiring a richer causal-role vocabulary. Recall Aristotle’s cause kinds—material, formal, proximate, ultimate. Their qualitative distinctness ensures quantitative incomparability. They resist squashing into a single number (ditto needed Aristotle-extending roles).  

15. Causal distance always counts. Intermediate-step unknowns mean iffier logic/numbers (e.g., genes typically exert many-causal-steps-removed highly co-causal effects).

16. Always ask: Is a single causal structure warranted? Or casual stability? Or close-enough causal closure? Are system components (roughly) mono-responsive?

17. Skilled practitioners respect their tools’ limits. A thinking-toolkit of context-matched rule-of-thumb maxims might counter rote-cranked-out methods and heterogeneity-hiding logic-losing numbers.


‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

These are the world’s greatest threats in 2021

We look back at a year ravaged by a global pandemic, economic downturn, political turmoil and the ever-worsening climate crisis.

Luis Ascui/Getty Images
Politics & Current Affairs

Billions are at risk of missing out on the digital leap forward, as growing disparities challenge the social fabric.

Keep reading Show less

Columbia study finds new way to extract energy from black holes

A new study explains how a chaotic region just outside a black hole's event horizon might provide a virtually endless supply of energy.

Credit: NASA's Goddard Space Flight Center
Surprising Science
  • In 1969, the physicist Roger Penrose first proposed a way in which it might be possible to extract energy from a black hole.
  • A new study builds upon similar ideas to describe how chaotic magnetic activity in the ergosphere of a black hole may produce vast amounts of energy, which could potentially be harvested.
  • The findings suggest that, in the very distant future, it may be possible for a civilization to survive by harnessing the energy of a black hole rather than a star.
Keep reading Show less
Mind & Brain

A psychiatric diagnosis can be more than an unkind ‘label’

A popular and longstanding wave of thought in psychology and psychotherapy is that diagnosis is not relevant for practitioners in those fields.

Scroll down to load more…