4 highlights from Stanford's Human Behavioral Biology course, available online for free

From understanding human aggression to epigenetics, Stanford University offers all 25 lessons of this fascinating course for free on YouTube.

Robert M. Sapolsky / BigThink
  • Stanford's Human Behavioral Biology course explores the interconnections between physiology and behavior.
  • Most of the course is taught by Robert M. Sapolsky, a professor of biology, neurology, and neurosciences at Stanford, and also an author and contributor to Big Think.
  • Check out some highlights from the course below.
Keep reading

There is scientific proof that foot fetishes are normal

Research dating back to the 1950s explains why the foot fetish makes total sense.

Photo by FotoDuets on Shutterstock
  • A fetish is a sexual fixation on a specific object, activity, or body part that becomes absolutely necessary to a person's sexual satisfaction.
  • According to recent research, 1 in 7 people have fantasized about feet in a sexual way at least once in their lives.
  • Prominent researcher Wilder Penfield, who established the "body image map" in the 1950s, explains that the sensory perception for our feet is located directly adjacent to the sensory perception area for our genitalia - which can explain the sexual fascination many people experience with feet.
Keep reading

Another important reason to stay fit: your independence

Increasing numbers of seniors need help with basic tasks. It doesn't have to be that way.

Photo by Wang Biao/VCG via Getty Images
  • Everyone suffers from sarcopenia: the loss of muscle mass and strength due to age.
  • While there are numerous benefits to exercise, an important one is remaining independent well into old age.
  • Weightlifting is essential for keeping muscle mass and strength as the decades go by.
Keep reading

Scientists make organs transparent so you can see inside

Add some color to the internal structures and you've got some eye-popping imagery.

Image source: Zhao, et al
  • By manipulating light refraction in organ tissue, it can be made transparent.
  • Coloring internal structures is as "simple" as slipping dyes between tissue cells.
  • A new method paves the way for fully 3D imagery of mature human organs.
Keep reading

This cancer treatment gives patients night-vision, and we finally know why

Scientists figured out how a certain treatment for skin cancer gives some patients a visual "superpower."

Photo Credit: Joshua Rodriguez / Unsplash
  • In the early 2000s, it was reported that some cancer patients being treated with chlorin e6 were experiencing enhanced night vision.
  • Using a molecular simulation, researchers discovered that a chlorin e6 injection under infrared light activates vision by changing retinal in the same way that visible light does.
  • Researchers hope that this chemical reaction could one day be harnessed to help treat certain types of blindness and sensitivity to light.


In the early 2000s, it was reported that a certain kind of skin cancer treatment called photodynamic therapy, which uses light to destroy malignant cells, had a bizarre side effect: It was giving patients enhanced night time vision.

An essential component to this therapy is a photosensitive compound called chlorin e6. Some people being treated with chlorin e6 were upset to discover that they were seeing silhouettes and outlines in the dark. Researchers think they might finally know why this happens.

The chemistry of vision

Rods and cones photoreceptors in a human retina.

Photo Credit: Dr. Robert Fariss, National Eye Institute, NIH / Flickr

"Seeing" happens when a series of receptors in the retina, the cones and rods, collect light. Rods contain a lot of rhodopsin, a photosensitive protein that absorbs visible light thanks to an active compound found in it called retinal. When retinal is exposed to visible light, it splits from rhodopsin. This then allows the light signal to be converted into an electrical signal that the visual cortex of our brains interprets into sight. Of course, there is "less light" at night, which actually means that light radiation is not in a domain visible to humans. It's at higher wavelengths (the infrared level) that retinal is not sensitive to. Hence, why we can't see in the dark like many critters can.

But the vision process can be activated by another interaction of light and chemistry. As it turns out, a chlorin e6 injection under infrared light changes retinal in the same way that visible light does. This is the cause of the unforeseen night vision side effect of the treatment.

"This explains the increase in night-time visual acuity," chemist Antonio Monari, from the University of Lorraine in France, told CNRS. "However, we did not know precisely how rhodopsin and its active retinal group interacted with chlorin. It is this mechanism that we have now succeeded in elucidating via molecular simulation."

Molecular simulation

"Molecular simulation" is a method that uses an algorithm that integrates the laws of quantum and Newtonian physics to model the functioning of a biological system over time. The team used this method to mimic the biomechanical movements of individual atoms – that is, their attraction or repulsion to one another – along with the making or breaking of chemical bonds.

"For our simulation we placed a virtual rhodopsin protein inserted in its lipid membrane in contact with several chlorin e6 molecules and water, or several tens of thousands of atoms," Monari explained to CNRS. "Our super-calculators ran for several months and completed millions of calculations before they were able to simulate the entire biochemical reaction triggered by infrared radiation." In nature, this phenomena occurs within fractions of a nanosecond.

The molecular simulation showed that when the chlorin e6 molecule absorbs the infrared radiation, it interacts with the oxygen present in the eye tissue and transforms it into reactive, or singlet, oxygen. In addition to killing cancer cells, "singlet oxygen" can also react with retinal to enable a slightly enhanced eyesight at night, when light waves are at the infrared level.

Future potential

Now that researchers know why the "supernatural" side effect occurs, they may be able to limit the chance of it happening to patients undergoing photodynamic treatment. Thinking further out, the researchers hope for the possibility that this chemical reaction could be harnessed to help treat certain types of blindness and sensitivity to light.

Ultimately, researchers say that this has been a big flex for the power of molecular simulations, which can give us astonishing scientific insights like this.

"Molecular simulation is already being used to shed light on fundamental mechanisms – for example, why certain DNA lesions are better repaired than others – and enable the selection of potential therapeutic molecules by mimicking their interaction with a chosen target," Monari told CNRS.

Don't hold your breath on night vision eyedrops though.