3,000-pound Triceratops skull unearthed in South Dakota

"You dream about these kinds of moments when you're a kid," said lead paleontologist David Schmidt.

Triceratops excavation

Excavation of a triceratops skull in South Dakota.

Credit: David Schmidt / Westminster College
  • The triceratops skull was first discovered in 2019, but was excavated over the summer of 2020.
  • It was discovered in the South Dakota Badlands, an area where the Triceratops roamed some 66 million years ago.
  • Studying dinosaurs helps scientists better understand the evolution of all life on Earth.

David Schmidt, a geology professor at Westminster College, had just arrived in the South Dakota Badlands in summer 2019 with a group of students for a fossil dig when he received a call from the National Forest Service. A nearby rancher had discovered a strange object poking out of the ground. They wanted Schmidt to take a look.

"One of the very first bones that we saw in the rock was this long cylindrical bone," Schmidt told St. Louis Public Radio. "The first thing that came out of our mouths was, 'That kind of looks like the horn of a triceratops.'"

After authorities gave the go-ahead, Schmidt and a small group of students returned this summer and spent nearly every day of June and July excavating the skull.

Credit: David Schmidt / Westminster College

"We had to be really careful," Schmidt told St. Louis Public Radio. "We couldn't disturb anything at all, because at that point, it was under law enforcement investigation. They were telling us, 'Don't even make footprints,' and I was thinking, 'How are we supposed to do that?'"

Another difficulty was the mammoth size of the skull: about 7 feet long and more than 3,000 pounds. (For context, the largest triceratops skull ever unearthed was about 8.2 feet long.) The skull of Schmidt's dinosaur was likely a Triceratops prorsus, one of two species of triceratops that roamed what's now North America about 66 million years ago.

Credit: David Schmidt / Westminster College

The triceratops was an herbivore, but it was also a favorite meal of the Tyrannosaurus rex. That probably explains why the Dakotas contain many scattered triceratops bone fragments, and, less commonly, complete bones and skulls. In summer 2019, for example, a separate team on a dig in North Dakota made headlines after unearthing a complete triceratops skull that measured five feet in length.

Michael Kjelland, a biology professor who participated in that excavation, said digging up the dinosaur was like completing a "multi-piece, 3-D jigsaw puzzle" that required "engineering that rivaled SpaceX," he jokingly told the New York Times.

Morrison Formation

Morrison Formation in Colorado

James St. John via Flickr

The Badlands aren't the only spot in North America where paleontologists have found dinosaurs. In the 1870s, Colorado and Wyoming became the first sites of dinosaur discoveries in the U.S., ushering in an era of public fascination with the prehistoric creatures — and a competitive rush to unearth them.

Since, dinosaur bones have been found in 35 states. One of the most fruitful locations for paleontologists has been the Morrison formation, a sequence of Upper Jurassic sedimentary rock that stretches under the Western part of the country. Discovered here were species like Camarasaurus, Diplodocus, Apatosaurus, Stegosaurus, and Allosaurus, to name a few.

\u200bTriceratops illustration

Triceratops illustration

Credit: Nobu Tamura/Wikimedia Commons

As for "Shady" (the nickname of the South Dakota triceratops), Schmidt and his team have safely transported it to the Westminster campus. They hope to raise funds for restoration, and to return to South Dakota in search of more bones that once belonged to the triceratops.

Studying dinosaurs helps scientists gain a more complete understanding of our evolution, illuminating a through-line that extends from "deep time" to present day. For scientists like Schmidt, there's also the simple joy of coming to face-to-face with a lost world.

"You dream about these kinds of moments when you're a kid," Schmidt told St. Louis Public Radio. "You don't ever think that these things will ever happen."

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

China's "artificial sun" sets new record for fusion power

China has reached a new record for nuclear fusion at 120 million degrees Celsius.

Credit: STR via Getty Images
Technology & Innovation

This article was originally published on our sister site, Freethink.

China wants to build a mini-star on Earth and house it in a reactor. Many teams across the globe have this same bold goal --- which would create unlimited clean energy via nuclear fusion.

But according to Chinese state media, New Atlas reports, the team at the Experimental Advanced Superconducting Tokamak (EAST) has set a new world record: temperatures of 120 million degrees Celsius for 101 seconds.

Yeah, that's hot. So what? Nuclear fusion reactions require an insane amount of heat and pressure --- a temperature environment similar to the sun, which is approximately 150 million degrees C.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it. In nuclear fusion, the extreme heat and pressure create a plasma. Then, within that plasma, two or more hydrogen nuclei crash together, merge into a heavier atom, and release a ton of energy in the process.

Nuclear fusion milestones: The team at EAST built a giant metal torus (similar in shape to a giant donut) with a series of magnetic coils. The coils hold hot plasma where the reactions occur. They've reached many milestones along the way.

According to New Atlas, in 2016, the scientists at EAST could heat hydrogen plasma to roughly 50 million degrees C for 102 seconds. Two years later, they reached 100 million degrees for 10 seconds.

The temperatures are impressive, but the short reaction times, and lack of pressure are another obstacle. Fusion is simple for the sun, because stars are massive and gravity provides even pressure all over the surface. The pressure squeezes hydrogen gas in the sun's core so immensely that several nuclei combine to form one atom, releasing energy.

But on Earth, we have to supply all of the pressure to keep the reaction going, and it has to be perfectly even. It's hard to do this for any length of time, and it uses a ton of energy. So the reactions usually fizzle out in minutes or seconds.

Still, the latest record of 120 million degrees and 101 seconds is one more step toward sustaining longer and hotter reactions.

Why does this matter? No one denies that humankind needs a clean, unlimited source of energy.

We all recognize that oil and gas are limited resources. But even wind and solar power --- renewable energies --- are fundamentally limited. They are dependent upon a breezy day or a cloudless sky, which we can't always count on.

Nuclear fusion is clean, safe, and environmentally sustainable --- its fuel is a nearly limitless resource since it is simply hydrogen (which can be easily made from water).

With each new milestone, we are creeping closer and closer to a breakthrough for unlimited, clean energy.

The science of sex, love, attraction, and obsession

The symbol for love is the heart, but the brain may be more accurate.

Videos
  • How love makes us feel can only be defined on an individual basis, but what it does to the body, specifically the brain, is now less abstract thanks to science.
  • One of the problems with early-stage attraction, according to anthropologist Helen Fisher, is that it activates parts of the brain that are linked to drive, craving, obsession, and motivation, while other regions that deal with decision-making shut down.
  • Dr. Fisher, professor Ted Fischer, and psychiatrist Gail Saltz explain the different types of love, explore the neuroscience of love and attraction, and share tips for sustaining relationships that are healthy and mutually beneficial.

Sex & Relationships

There never was a male fertility crisis

A new study suggests that reports of the impending infertility of the human male are greatly exaggerated.

Quantcast