Gene-edited babies may live shorter lives, analysis finds

Chinese scientist He Jiankui edited the genes of two babies to be resistant to HIV, provoking outrage. Now, a new genetic analysis shows why this was reckless.

  • The gene-editing technique CRISPR offers major benefits to humanity, but scientists don't believe the field is mature enough for widespread editing.
  • For this reason, when Chinese scientist He Jiankui edited the genes of two babies to be resistant to HIV, his work provoked outrage.
  • A new study of 400,000 genetic profiles reveals that He's genetic editing did indeed have an unintended consequence.


Ever since Frankenstein, scientists have been keen to avoid the public perception that they are playing God. This is part of the reason why the scientific community reacted so strongly to the Chinese biophysicist He Jiankui's announcement in 2018 that he had genetically edited the embryos of two girls in order to make them more resilient to HIV. As a result of his work, He was fired from his position and may face criminal charges.

Now, new research published in Nature Medicine underscores the reason for this backlash. The study examined a database of the genetic profiles of over 400,000 individuals from the UK, narrowing in on those who had the delta-32 mutation to the CCR5 gene. When an individual inherits delta-32 from both parents, they have a markedly strong resistance to HIV — this is the same mutation that He introduced into two subjects known by their pseudonyms Lulu and Nana using the gene-editing technique CRISPR.

HIV resistance is an obvious benefit of this mutation, but the trouble with gene editing is that it can be wildly unpredictable. "This is far too premature," said Dr. Eric Topol, head of the Scripps Research Translational Institute in California. "We're dealing with the operating instructions of a human being. It's a big deal." The new research showed that this tampering did have some unintended consequences: Individuals with this genetic mutation live two years less than those without it.

Playing with fire

ANTHONY WALLACE/AFP/Getty Images

He Jiankui during a panel discussion after presenting his results at the Second International Summit on Human Genome Editing in Hong Kong.

He selected Lulu and Nana for gene editing because their father had HIV. It's far more common for HIV to pass from the mother to the offspring, but it is possible, albeit rare, for HIV to pass from the father to the offspring. Providing Lulu and Nana each with two copies of delta-32 mutation did likely protect them against this possibility as well as from catching HIV later in life.

However, some evidence exists that individuals with two copies of delta-32 catch influenza, West Nile, and certain other diseases more easily. While HIV is a grievous disease, these far more commonly encountered diseases can often be just as deadly, especially in one's older age. This is precisely the result that the researchers uncovered in their analysis. Individuals with two copies of delta-32 were 20% more likely to die before the age of 76, with the highest probability of death occurring at 74.

What's more, because Lulu and Nana had their genes edited while they were embryos, this mutation will be passed down to any offspring that they have later. Given this scope, its increasingly clear why scientists reacted with such horror at He's actions: Gene-editing an embryo could have long-lasting, unintended consequences that could seriously impair what would have been otherwise healthy individuals for generations.

Another potential unknown impact that delta-32 could have is related to the girls' ethnicities. The mutation is far more common in individuals from northern Europe, while its very rare for individuals from Asia and Africa. Some researchers argue that the presence of delta-32 in Europeans is due to the impact of plagues from the Middle Ages, such as the Black Death. The absence of this mutation in other parts of the world is likely because it simply isn't useful there—different environments have different diseases, against which delta-32 could be more deleterious than beneficial.

He's actions and studies such as this one underscore the importance of a smart, evidence-based regulatory framework for gene-editing technologies. One question we need to resolve is whether germline editing, such as that performed on Lulu and Nana, should be permitted since these changes can be passed down to subsequent offspring. We also need a way to gauge the impact of editing specific genes so that we're not surprised by unintended side effects, like the diminished lifespan caused by delta-32. All in all, this study and He's work show us that there are simply too many moving parts to just introduce genetic mutations and see how things go. We need to be more rigorous than that.

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

Michio Kaku: Genetic and digital immortality are within reach

Technology may soon grant us immortality, in a sense. Here's how.

Videos
  • Through the Connectome Project we may soon be able to map the pathways of the entire human brain, including memories, and create computer programs that evoke the person the digitization is stemmed from.
  • We age because errors build up in our cells — mitochondria to be exact.
  • With CRISPR technology we may soon be able to edit out errors that build up as we age, and extend the human lifespan.
Keep reading Show less

Active ingredient in Roundup found in 95% of studied beers and wines

The controversial herbicide is everywhere, apparently.

(MsMaria/Shutterstock)
Surprising Science
  • U.S. PIRG tested 20 beers and wines, including organics, and found Roundup's active ingredient in almost all of them.
  • A jury on August 2018 awarded a non-Hodgkin's lymphoma victim $289 million in Roundup damages.
  • Bayer/Monsanto says Roundup is totally safe. Others disagree.
Keep reading Show less

Robot pizza delivery coming later this year from Domino's

The pizza giant Domino's partners with a Silicon Valley startup to start delivering pizza by robots.

Nuro
Technology & Innovation
  • Domino's partnered with the Silicon Valley startup Nuro to have robot cars deliver pizza.
  • The trial run will begin in Houston later this year.
  • The robots will be half a regular car and will need to be unlocked by a PIN code.

Would you have to tip robots? You might be answering that question sooner than you think as Domino's is about to start using robots for delivering pizza. Later this year a fleet of self-driving robotic vehicles will be spreading the joy of pizza throughout the Houston area for the famous pizza manufacturer, using delivery cars made by the Silicon Valley startup Nuro.

The startup, founded by Google veterans, raised $940 million in February and has already been delivering groceries for Kroger around Houston. Partnering with the pizza juggernaut Domino's, which delivers close to 3 million pizzas a day, is another logical step for the expanding drone car business.

Kevin Vasconi of Domino's explained in a press release that they see these specially-designed robots as "a valuable partner in our autonomous vehicle journey," adding "The opportunity to bring our customers the choice of an unmanned delivery experience, and our operators an additional delivery solution during a busy store rush, is an important part of our autonomous vehicle testing."

How will they work exactly? Nuro explained in its own press release that this "opportunity to use Nuro's autonomous delivery" will be available for some of the customers who order online. Once they opt in, they'll be able to track the car via an app. When the vehicle gets to them, the customers will use a special PIN code to unlock the pizza compartment.

Nuro and its competitors Udelv and Robomart have been focusing specifically on developing such "last-mile product delivery" machines, reports Arstechnica. Their specially-made R1 vehicle is about half the size of a regular passenger car and doesn't offer any room for a driver. This makes it safer and lighter too, with less potential to cause harm in case of an accident. It also sticks to a fairly low speed of under 25 miles an hour and slams on the breaks at the first sign of trouble.

What also helps such robot cars is "geofencing" technology which confines them to a limited area surrounding the store.

For now, the cars are still tracked around the neighborhoods by human-driven vehicles, with monitors to make sure nothing goes haywire. But these "chase cars" should be phased out eventually, an important milestone in the evolution of your robot pizza drivers.

Check out how Nuro's vehicles work: