DNA’s Hidden Layer Is Real, and Physicists Are Finding More Proof

Physicists confirm the presence of a second layer if information in DNA that determines how it folds and what kind of cells it creates.

A colorful representation of DNA
A digital representation of the human genome August 15, 2001 at the American Museum of Natural History in New York City. Each color represents one the four chemical compenents of DNA. (Photo by Mario Tama/Getty Images)

Maybe you've wondered, as I have, how it could possibly be that all of the different types of cells in our bodies are made up of the same DNA chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). These chemicals pair off into A/T and C/G base pairs which then form into sequences, or “genes." So how could the finite number of possible sequences create such a wide range of things, from eyeballs to teeth, hair to heart muscle?


A lab technician handles a sample of DNA at the Genetic Institute Nantes-Atlantique (IGNA) on December 10, 2015 in Nantes, western France. The Genetic Institute Nantes-Atlantique (IGNA) is one of the first French laboratories of forensic expertise to use DNA evidence to establish the physical characteristics of a suspect and so his 'genetic sketch,' can be used as a 'support tool ' in an investigation. (GEORGES GOBET/AFP/Getty Images)

Every cell contains a sequence of some six billion base pairs that are just under 79 inches long(!), or two meters, in length. To fit into something as small as a cell, it's folded in on itself into a dense bundle—containing about 10,000 little loops—called a nucleosome. The answer to the question above—and it's something geneticists have known since the 1980s—is that what's produced by a DNA strand is determined by the way the sequence is folded. The base pairs that wind up on the outside of the nucleosome are expressed as proteins and influence the cell's characteristics, while the ones folded away into the inside aren't and don't.

The obvious question is what determines how a sequence is folded. It turns out specialized proteins in the DNA form a kind of “second layer" of information—really, mechanical cues—that determine how it will fold.

A vial containing a few droplets of water -- and one million copies of an old movie encoded onto DNA -- is displayed during a media tour at Technicolor's Sunset Boulevard studios in Hollywood, California, March 30, 2016. (ROBYN BECK/AFP/Getty Images)

Now physicists at Leiden University in the Netherlands have confirmed the presence of this second layer of instructions via computer simulations of baker's yeast and fission yeast sequences, with various mechanical cues added randomly as a second level of information. The genes in their simulations expressed differently, as expected, based on what was folded to the outside and what wound up on the inside.

Most exciting is the promise that Leiden's work could herald the beginning of simulations that would allow future scientists to manipulate folding to, say, move a person's destructive, disease-causing genes to the inside of cells where they'll do no harm. A very different way to help keep us humans healthy.

Iron Age discoveries uncovered outside London, including a ‘murder’ victim

A man's skeleton, found facedown with his hands bound, was unearthed near an ancient ceremonial circle during a high speed rail excavation project.

Photo Credit: HS2
Culture & Religion
  • A skeleton representing a man who was tossed face down into a ditch nearly 2,500 years ago with his hands bound in front of his hips was dug up during an excavation outside of London.
  • The discovery was made during a high speed rail project that has been a bonanza for archaeology, as the area is home to more than 60 ancient sites along the planned route.
  • An ornate grave of a high status individual from the Roman period and an ancient ceremonial circle were also discovered during the excavations.
Keep reading Show less

Are lab–grown embryos and human hybrids ethical?

This spring, a U.S. and Chinese team announced that it had successfully grown, for the first time, embryos that included both human and monkey cells.

Getty Images
Surprising Science
In Aldous Huxley's 1932 novel “Brave New World," people aren't born from a mother's womb. Instead, embryos are grown in artificial wombs until they are brought into the world, a process called ectogenesis.
Keep reading Show less

A big lesson from the ‘Oumuamua alienware controversy

Scientists should be cautious when expressing an opinion based on little more than speculation.

Artist's impression of ʻOumuamua

Credit: European Southern Observatory/M. Kornmesser
13-8
  • In October 2017, a strange celestial object was detected, soon to be declared our first recognized interstellar visitor.
  • The press exploded when a leading Harvard astronomer suggested the object to have been engineered by an alien civilization.
  • This is an extraordinary conclusion that was based on a faulty line of scientific reasoning. Ruling out competing hypotheses doesn't make your hypothesis right.
Keep reading Show less
Surprising Science

Asteroid impact: NASA simulation shows we are sitting ducks

Even with six months' notice, we can't stop an incoming asteroid.

Quantcast