New Solar Cells Capture Double the Amount of Energy from the Sun

Scientists at GW School of Engineering and Applied Science develop a prototype solar panel that captures nearly double the amount of energy from light.


A lot of people are excited about solar energy, and with good reason: It’s clean, renewable, and as manufacturing capabilities ramp up, an increasingly realistic way to power our world. On April 30th, 2017, Germany met 85% of its power needs from renewable energy sources including solar panels. Still, solar cells currently capture only about 25% of the available solar energy. Now a team from GW School of Engineering and Applied Science has produced a remarkably designed solar cell that collects nearly half of it. It’s been believed that the upper limit for the efficiency of conventional solar cells is about 30%, so this could be a big deal.

Scientists at GW School of Engineering and Applied Science have designed a multi-layered, stacked cell that operates as a sort of “solar sieve.” Each layer grabs a portion of the light spectrum as sunlight passes through on its way to the next layer down.

(GW SCHOOL OF ENGINEERING AND APPLIED SCIENCE)

As lead author of the just-published research Matthew Lumb explains, “Around 99 percent of the power contained in direct sunlight reaching the surface of Earth falls between wavelengths of 250nm (Editor's note: nm = nanometers) and 2500nm, but conventional materials for high-efficiency multi-junction solar cells cannot capture this entire spectral range. Our new device is able to unlock the energy stored in the long-wavelength photons, which are lost in conventional solar cells, and therefore provides a pathway to realizing the ultimate multi-junction solar cell.”

The GW team’s solar cell works with concentrator photovoltaic panels that focus sunlight onto micro-scale solar cells of about one millimeter square. Being so small opens up the possibilities for using them in sophisticated structures that can eventually be manufactured at a reasonable cost.

Aside from its stacking aspect, the GW solar cell incorporates a couple of other innovative touches. 

What allows a GW panel to collect longer wavelengths is a material more commonly used with infrared lasers and photodetectors called gallium antimonide (GaSb). Cells made of this complement standard high-efficiency solar cells grown on conventional substrates.

The manner in which the GW solar cell is constructed is also a bit different. Its layers are stacked with extreme precision using a method called “transfer printing” that allows tiny three-dimensional structures to be assembled.

The GW solar cell is a one-off built to demonstrate the potential for far greater efficiency in solar energy collection. The technology it introduces is currently too expensive for cost-effective manufacture. But solar cells that are twice as effective at capturing energy from the sun? Sign us up for that.

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Sponsored
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

Dead – yes, dead – tardigrade found beneath Antarctica

A completely unexpected discovery beneath the ice.

(Goldstein Lab/Wkikpedia/Tigerspaws/Big Think)
Surprising Science
  • Scientists find remains of a tardigrade and crustaceans in a deep, frozen Antarctic lake.
  • The creatures' origin is unknown, and further study is ongoing.
  • Biology speaks up about Antarctica's history.
Keep reading Show less

This 1997 Jeff Bezos interview proves he saw the future coming

Jeff Bezos, the founder of Amazon.com, explains his plan for success.

Technology & Innovation
  • Jeff Bezos had a clear vision for Amazon.com from the start.
  • He was inspired by a statistic he learned while working at a hedge fund: In the '90s, web usage was growing at 2,300% a year.
  • Bezos explains why books, in particular, make for a perfect item to sell on the internet.
Keep reading Show less

Why are women more religious than men? Because men are more willing to take risks.

It's one factor that can help explain the religiosity gap.

Photo credit: Alina Strong on Unsplash
Culture & Religion
  • Sociologists have long observed a gap between the religiosity of men and women.
  • A recent study used data from several national surveys to compare religiosity, risk-taking preferences and demographic information among more than 20,000 American adolescents.
  • The results suggest that risk-taking preferences might partly explain the gender differences in religiosity.
Keep reading Show less