Big ideas.
Once a week.
Subscribe to our weekly newsletter.
What Is Pokémon Go and Why You Should Care
Nintendo has recently-released the Pokémon Go smartphone game has taken the U.S. by storm, ushering in a new age in gaming and augmented reality.

To put it simply, Pokémon Go is a location-based augmented reality game for your smartphone, the first true hit of this genre. It was developed by Niantic, a company under Google's umbrella. Since it was released in the US a week ago, the game has become a cultural and social phenomenon, quickly going viral, rivaling such online stalwarts as Twitter in popularity.
What do you do in this game? You point your smartphone at the world around you and try to catch magical creatures called Pokémon (short for "pocket monster") that seem to appear on the screen. It's an amazing extension of the game space from the screen to the whole of your everyday experience.
The game uses GPS to pinpoint your location and inserts the little monsters into real spaces that you look at through the phone's camera. The game populates the creatures all over your city, with different kinds of Pokémon materializing depending on where you are and the time of the day. This way you have to go to more places to find all the monsters.
The game is actually smart enough to populate your world with the monsters that are location-dependent. For instance, being on a beach would prompt a water-based Pokémon to pop up.
Once you catch them (which requires you to battle them), you can train the Pokémon and make them fight each other. In the game's parlance, this makes you a "trainer". You can also fight other such trainers to give your little monster expanded abilities and to up your ability to find even rarer Pokémon.
Another aspect of the game are PokéStops, which are specific locations in the "real" world that you can see on a map inside the game. Once you go to these places, you can buy (for real money) the game's weapons called Poké Balls and Pokémon-hatching eggs. You can also buy and set up lures that can attract Pokémon to these locations (a technique used by some businesses like cafes to attract hordes of obsessed Pokémon hunters).
To get all the monsters, you need to travel a lot, both day and night.
How popular has the game been? People are looking for Pokémon all over their cities, parks, offices, and even while in Ubers. The game was even used by some enterprising robbers to lure victims.
The Pokémon franchise is owned by Nintendo and already had a viral phase in the late 1990s, when it became wildly popular on the company's handheld consoles, spawning a tv show, movies and trading cards. The tremendous popularity of this new incarnation of the game brought Nintendo's market value up by $9 billion.
The game's amazing spread has caused much attention and scrutiny, including criticism of how it gathers user data, allowing for possible breaches of security. The developers announced that they are working on a patch to fix any such issues.
The game is available for both iOS and Android.
Happy hunting (and watch out for that light pole as you walk glued to your screen)!
A landslide is imminent and so is its tsunami
An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.
- A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
- A wall of rock exposed by a receding glacier is about crash into the waters below.
- Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.
The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.
Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .
"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.
The Barry Arm Fjord
Camping on the fjord's Black Sand Beach
Image source: Matt Zimmerman
The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.
Not Alaska’s first watery rodeo, but likely the biggest
Image source: whrc.org
There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.
The Barry Arm event will be larger than either of these by far.
"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."
Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.
What the letter predicts for Barry Arm Fjord
Moving slowly at first...
Image source: whrc.org
"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."
The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.
Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.
Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.
While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.
Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."
How do you prepare for something like this?
Image source: whrc.org
The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:
"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."
In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.
If we do find alien life, what kind will it be?
Three lines of evidence point to the idea of complex, multicellular alien life being a wild goose chase. But are we clever enough to know?
A scene from the 1996 Tim Burton film "Mars Attacks!"
- Everyone wants to know if there is alien life in the universe, but Earth may give us clues that if it exists it may not be the civilization-building kind.
- Most of Earth's history shows life that is single-celled. That doesn't mean it was simple, though. Stunning molecular machines were being evolved by those tiny critters.
- What's in a planet's atmosphere may also determine what evolution can produce. Is there a habitable zone for complex life that's much smaller than what's allowed for microbes?
Protozoa—a term for a group of single-celled eukaryotes—and green algae in wastewater, viewed under the microscope.
Credit: sinhyu via Adobe Stock
<p>Another way the story of life on Earth might not get repeated elsewhere in the cosmos relates to the composition of planetary atmospheres. Our world did not begin with its oxygen-rich air. Instead, oxygen didn't show up until almost two billion years after the planet formed and one billion years after life appeared. Earth's original atmosphere was, most likely, a mix of nitrogen and CO2. Remarkably it was life that pumped the oxygen into the air as a byproduct of a novel form of photosynthesis invented by a novel kind of single-celled organism, the nucleus-bearing eukaryotes. The appearance of oxygen in Earth's air was not just a curiosity for evolution. Life soon figured out how to use the newly abundant element and, it turns out, oxygen-based biochemistry was supercharged compared to what came before. With more energy available, evolution could build ever larger and more complex critters.</p><p>Oxygen may also be unique in allowing the kinds of metabolisms in multicellular life (especially ours) needed for making fast and fast-thinking animals. Astrobiologist <a href="http://faculty.washington.edu/dcatling/Catling2008CatalystMag.pdf" target="_blank" rel="noopener noreferrer">David Catling</a> has argued that only oxygen has the right kind of chemistry that would allow for animals to form on any world.</p><p>Atmospheres may play another role in what can and can't happen in the evolution of life. In 1959, <a href="https://astro.uchicago.edu/alumni/su-shu-huang-1949.php" target="_blank" rel="noopener noreferrer">Su-Shu Huang</a> proposed that each star would be surrounded by a "<a href="https://www.nasa.gov/ames/kepler/habitable-zones-of-different-stars" target="_blank" rel="noopener noreferrer">habitable zone</a>" of orbits where a planet would have temperatures neither too hot nor too cold to keep life from forming (i.e. liquid water could exist on the planet's surface). Since then, the habitable zone has become a staple of astrobiological studies. Astronomers now know that the outer part of the habitable zone will be dominated by worlds with lots of greenhouse gases like CO<em>2</em>. A planet in a location like Mars, for example, would require a thick CO2 blanket to keep its surface above freezing. But all that CO2 could present its own problems for life. Almost all forms of animal life on Earth, including sea creatures, die when placed in CO2-rich environments. This has led astronomer <a href="https://eschwiet.github.io/" target="_blank" rel="noopener noreferrer">Eddie Schwieterman</a> and colleagues to propose a <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ab1d52" target="_blank" rel="noopener noreferrer">habitable zone for complex life</a>: A band of orbits where planets can stay warm without requiring heavy CO2 atmospheres. According to Schwieterman, animal life of the kind we know would only be able to form in this much thinner band of orbits. </p>Researchers read centuries-old sealed letter without ever opening it
The key? A computational flattening algorithm.
An international team of scholars has read an unopened letter from early modern Europe — without breaking its seal or damaging it in any way — using an automated computational flattening algorithm.
'Deep Nostalgia' AI brings old photos to life through animation
Using machine-learning technology, the genealogy company My Heritage enables users to animate static images of their relatives.
