Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

10 things you can do right now to make your brain sharper

How can we keep our brains in top form? Here are some powerful activities you can do immediately.

Light bulb
Credit: Pixabay


What can you do to make your brain work better, especially as you age? Science has a lot to say on this topic. Here’s a list of some things you can do right now, after you finish reading this article (in itself a brain exercise):

1. Stop multi-tasking - it’s actually impossible for your brain to fully multitask, as show a number of studies, according to neuroscientist Daniel Levitin. If you do a number things at once, your brain will not keep them all fully in its attention. Instead, it will focus on one thing at a time, giving it a little bit of attention before moving on to another thing and so on. Multitasking will “fractionate” your concentration, deplete your neural resources, tire you out, and you probably won’t get any of those things done as well as if you just paid attention to them one at a time. 

2. Read a book - not only is it a no-brainer that reading can increase your fluid and emotional intelligence, researchers also found that reading creates new white matter in the brain, which helps system-wide communication. This aids the brain in processing information with more efficiency.

3. Meditaterecent studies demonstrate that meditation not only relieves stress but actually changes your brain. And the kind of meditation you practice affects the kind of changes your brain experiences.

4. Do weightlifting - research shows that pumping iron at least twice a week can make your brain work better and prevent dementia, especially if you are older. 

Credit: Pixabay

5. Start learning another language - scientists found that bilingual people have a specific “advantage” because they use less brain power to accomplish tasks, helping their brains age better. A Canadian study showed that people who spoke two languages processed information more economically, using up less brain circuitry. Plus, being multilingual will likely make you more open to other cultures, making travel more fun.

6. Play chess - studies show that chess players have improved pattern recognition, use both sides of the brain to make decisions and the brains of top players exhibit neural efficiency. Chess is also good for improving your memory skills as the game forces you to keep a lot of variables and possibilities in mind at all times. 

Credit: Pixabay

7. Eat with chopsticks - if you are not doing it already, this simple switch of utensils can grow new dendrites - branches of nerve cells. This will improve communication between brain cells, says neurobiologist Lawrence Katz in his book “Keep Your Brain Alive” which has 83 brain exercises for improving mental fitness. Eating with chopsticks will force you to eat more mindfully - good not only for your brain, but digestion and calorie consumption. 

8. Think positively - learning to think positively can literally rewire your brain. Scientists proved that if you consciously alter your thought processes through practices like mindfulness, you can make your brain shift from right-side thinking to the left. You will also be less anxious, have more energy and be happier overall.  

Credit: Pixabay

9. Go dancing - research indicates that dancing might speed up the brain’s processing speed due to its unique combination of cognitive, physical and social activity. This might also slow the effects of aging and grow new white matter more than walking or stretching. 

10. Get some sleep - numerous studies showed how the lack of sleep can lead to a host of illnesses like heart disease, diabetes, depression and trigger seizures. It will also negatively affect your memory and thinking. Not getting enough shut-eye can also lead to crucial mistakes. You will have “cognitive lapses,” says Dr. Fried, whose study demonstrated that neurons can’t function properly if you don’t sleep well. 

Radical innovation: Unlocking the future of human invention

Ready to see the future? Nanotronics CEO Matthew Putman talks innovation and the solutions that are right under our noses.

Big Think LIVE

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Keep reading Show less

Your body’s full of stuff you no longer need. Here's a list.

Evolution doesn't clean up after itself very well.

Image source: Ernst Haeckel
Surprising Science
  • An evolutionary biologist got people swapping ideas about our lingering vestigia.
  • Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
  • Here are the six traits that inaugurated the fun.
Keep reading Show less

Quantum particles timed as they tunnel through a solid

A clever new study definitively measures how long it takes for quantum particles to pass through a barrier.

Image source: carlos castilla/Shutterstock
  • Quantum particles can tunnel through seemingly impassable barriers, popping up on the other side.
  • Quantum tunneling is not a new discovery, but there's a lot that's unknown about it.
  • By super-cooling rubidium particles, researchers use their spinning as a magnetic timer.

When it comes to weird behavior, there's nothing quite like the quantum world. On top of that world-class head scratcher entanglement, there's also quantum tunneling — the mysterious process in which particles somehow find their way through what should be impenetrable barriers.

Exactly why or even how quantum tunneling happens is unknown: Do particles just pop over to the other side instantaneously in the same way entangled particles interact? Or do they progressively tunnel through? Previous research has been conflicting.

That quantum tunneling occurs has not been a matter of debate since it was discovered in the 1920s. When IBM famously wrote their name on a nickel substrate using 35 xenon atoms, they used a scanning tunneling microscope to see what they were doing. And tunnel diodes are fast-switching semiconductors that derive their negative resistance from quantum tunneling.

Nonetheless, "Quantum tunneling is one of the most puzzling of quantum phenomena," says Aephraim Steinberg of the Quantum Information Science Program at Canadian Institute for Advanced Research in Toronto to Live Science. Speaking with Scientific American he explains, "It's as though the particle dug a tunnel under the hill and appeared on the other."

Steinberg is a co-author of a study just published in the journal Nature that presents a series of clever experiments that allowed researchers to measure the amount of time it takes tunneling particles to find their way through a barrier. "And it is fantastic that we're now able to actually study it in this way."

Frozen rubidium atoms

Image source: Viktoriia Debopre/Shutterstock/Big Think

One of the difficulties in ascertaining the time it takes for tunneling to occur is knowing precisely when it's begun and when it's finished. The authors of the new study solved this by devising a system based on particles' precession.

Subatomic particles all have magnetic qualities, and they spin, or "precess," like a top when they encounter an external magnetic field. With this in mind, the authors of the study decided to construct a barrier with a magnetic field, causing any particles passing through it to precess as they did so. They wouldn't precess before entering the field or after, so by observing and timing the duration of the particles' precession, the researchers could definitively identify the length of time it took them to tunnel through the barrier.

To construct their barrier, the scientists cooled about 8,000 rubidium atoms to a billionth of a degree above absolute zero. In this state, they form a Bose-Einstein condensate, AKA the fifth-known form of matter. When in this state, atoms slow down and can be clumped together rather than flying around independently at high speeds. (We've written before about a Bose-Einstein experiment in space.)

Using a laser, the researchers pusehd about 2,000 rubidium atoms together in a barrier about 1.3 micrometers thick, endowing it with a pseudo-magnetic field. Compared to a single rubidium atom, this is a very thick wall, comparable to a half a mile deep if you yourself were a foot thick.

With the wall prepared, a second laser nudged individual rubidium atoms toward it. Most of the atoms simply bounced off the barrier, but about 3% of them went right through as hoped. Precise measurement of their precession produced the result: It took them 0.61 milliseconds to get through.

Reactions to the study

Scientists not involved in the research find its results compelling.

"This is a beautiful experiment," according to Igor Litvinyuk of Griffith University in Australia. "Just to do it is a heroic effort." Drew Alton of Augustana University, in South Dakota tells Live Science, "The experiment is a breathtaking technical achievement."

What makes the researchers' results so exceptional is their unambiguity. Says Chad Orzel at Union College in New York, "Their experiment is ingeniously constructed to make it difficult to interpret as anything other than what they say." He calls the research, "one of the best examples you'll see of a thought experiment made real." Litvinyuk agrees: "I see no holes in this."

As for the researchers themselves, enhancements to their experimental apparatus are underway to help them learn more. "We're working on a new measurement where we make the barrier thicker," Steinberg said. In addition, there's also the interesting question of whether or not that 0.61-millisecond trip occurs at a steady rate: "It will be very interesting to see if the atoms' speed is constant or not."

Self-driving cars to race for $1.5 million at Indianapolis Motor Speedway ​

So far, 30 student teams have entered the Indy Autonomous Challenge, scheduled for October 2021.

Illustration of cockpit of a self-driving car

Indy Autonomous Challenge
Technology & Innovation
  • The Indy Autonomous Challenge will task student teams with developing self-driving software for race cars.
  • The competition requires cars to complete 20 laps within 25 minutes, meaning cars would need to average about 110 mph.
  • The organizers say they hope to advance the field of driverless cars and "inspire the next generation of STEM talent."
Keep reading Show less
Mind & Brain

The dangers of the chemical imbalance theory of depression

A new Harvard study finds that the language you use affects patient outcome.

Scroll down to load more…
Quantcast