Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

After Hurricane Maria, these lizards developed a grip that's 10 times stronger

Are we witnessing evolution in real time?

  • After Hurricane Maria, anole species on the island of Dominica developed super strong grips.
  • This development may be one of the fasted rates of evolutionary change ever recorded.
  • Climate change will likely to result in more intense hurricanes, but not all species will adapt so quickly.


In September 2017, Hurricane Maria slammed into the island of Dominica. The category 5 storm then tore across the West Indies and up the Atlantic. Islands such as Haiti, Puerto Rico, the Dominican Republic, the Bahamas, and the U.S. Virgin Islands were devastated by the crashing storm surges and stampeding winds. Today, Puerto Rico's official death toll stands at a staggering 2,975.

We were not ready for Hurricane Maria, and we aren't preparing for the next natural disaster either. And they are coming. Weather scientists aren't sure if climate change will increase the number of hurricanes, but they expect the warmer oceans to intensify their impact. We'll need to adapt.

This said, fellow members of the animal kingdom are already acclimating. As reported by New Scientist, two species of anole lizards on Dominica have developed super strong grips in response to Hurricane Maria. Their improved cling helped the species survive, but scientists aren't sure what caused the rapid adaptation.

Hanging on for dear life

Hurricane Maria razed homes and shredded forests on the islands of Dominica and Puerto Rico. Image source: U.S. Department of Homeland Security / Wikimedia Commons)

Back in 2016, Claire Dufour, an evolutionary ecologist at Harvard, and her team visited Dominica to study two species of anoles: the native anoles and the crested anoles (the latter of which are an invasive species). They were interested in how the lizards coexisted and recorded data on their body size, toe features, and grip strength.

Then Hurricane Maria hit. The storm crushed the island's cities and left a lasting, perhaps indelible, imprint on its ecology.

Dufour and her team returned in 2018 to re-examine the anoles. The lizards they found had stronger grips than the ones they examined in 2016. Not surprising, really. One would expect stronger, fitter anoles to be more capable of surviving Maria's high winds.

What did surprise the scientists, however, was that the lizards' body size hadn't changed, nor their toe-pad size. Just their power to cling. Additionally, their grip strength averaged to an astounding 10 times stronger than previously recorded. The anoles, it seems, had rapidly evolved to meet intense environmental demands. The strong clingers managed to weather the storm and passed on their genes to the next generation.

"This study shows that hurricanes may be a previously overlooked driver of performance in Anolis lizards," Dufour told New Scientist. "This is pretty unique."

The researchers published their findings last month, May, in the Journal of Zoology.

Is it evolution in the making?

Another study, this one published in Nature, looked at anole toe-pad shapes and found that hurricanes induced changes there, too. Like Dufour's team, these researchers believe that these adaptations imply natural selection at work.

"This is a striking case of rapid evolution, which, as we can see here, can proceed exceedingly fast, even within a generation," Carol Lee, at the Center for Rapid Evolution at the University of Wisconsin at Madison, told the Atlantic. "I expect there will be many more cases like this in the future, where catastrophic events impose strong selection on populations, and where populations will need to evolve or go extinct."

Other researchers aren't as sure yet. If the lizards' newly minted grip strength and toe-pad shape are not heritable, then they have not become part of the species' genetic makeups. In which case, the changes are the result of phenotypic plasticity, meaning an organism's characteristics are flexible enough to be influenced by the environment without invoking evolution.

Both studies say additional research is needed to determine if hurricanes are overlooked evolutionary drivers or molders of elastic characteristics.

If these changes are indeed hurricane-induced natural selection, however, then "our understanding of evolutionary dynamics needs to incorporate the effects of these potentially severe selective episodes," Dufour writes.

Adapting to climate change

While the anoles may be able to adapt to the more extreme weather, other species won't be so lucky.

In a meta-analysis of more than 130 studies, Mark Urban, biologist and associate professor at the University of Connecticut, found that climate change "threaten[s] one in six species under current policies." Australia, South America, and New Zealand showed the highest extinction risks, but risks across the globe and taxonomy accelerated with increases in global temperature.

Increases in global temperatures will also allow insects and invasive species to spread to new territories, increasing the risk of insect-borne diseases and further damage to local ecosystems. And the intensity of extreme weather will continue to damage human cities and agricultural production.

As we enter hurricane season again, we'll unfortunately have more chances to see how the anoles, and people, adapt to meet the increased pressures of climate change.

How accountability at work can transform your organization

If you don't practice accountability at work you're letting the formula for success slip right through your hands.

Videos
  • What is accountability? It's a tool for improving performance and, once its potential is thoroughly understood, it can be leveraged at scale in any team or organization.
  • In this lesson for leaders, managers, and individuals, Shideh Sedgh Bina, a founding partner of Insigniam and the editor-in-chief of IQ Insigniam Quarterly, explains why it is so crucial to success.
  • Learn to recognize the mindset of accountable versus unaccountable people, then use Shideh's guided exercise as a template for your next post-project accountability analysis—whether that project was a success or it fell short, it's equally important to do the reckoning.

What if Middle-earth was in Pakistan?

Iranian Tolkien scholar finds intriguing parallels between subcontinental geography and famous map of Middle-earth

Could this former river island in the Indus have inspired Tolkien to create Cair Andros, the ship-shaped island in the Anduin river?

Image: Mohammad Reza Kamali, reproduced with kind permission
Strange Maps
  • J.R.R. Tolkien himself hinted that his stories are set in a really ancient version of Europe.
  • But a fantasy realm can be inspired by a variety of places; and perhaps so is Tolkien's world.
  • These intriguing similarities with Asian topography show that it may be time to 'decolonise' Middle-earth.
Keep reading Show less

Giant whale sharks have teeth on their eyeballs

The ocean's largest shark relies on vision more than previously believed.

An eight-metre-long Whale shark swims with other fish at the Okinawa Churaumi Aquarium on February 26, 2010 in Motobu, Okinawa, Japan.

Photo by Koichi Kamoshida/Getty Images
Surprising Science
  • Japanese researchers discovered that the whale shark has "tiny teeth"—dermal denticles—protecting its eyes from abrasion.
  • They also found the shark is able to retract its eyeball into the eye socket.
  • Their research confirms that this giant fish relies on vision more than previously believed.
Keep reading Show less

A massive star has mysteriously vanished, confusing astronomers

A gigantic star makes off during an eight-year gap in observations.

Image source: ESO/L. Calçada
Surprising Science
  • The massive star in the Kinsman Dwarf Galaxy seems to have disappeared between 2011 and 2019.
  • It's likely that it erupted, but could it have collapsed into a black hole without a supernova?
  • Maybe it's still there, but much less luminous and/or covered by dust.

A "very massive star" in the Kinman Dwarf galaxy caught the attention of astronomers in the early years of the 2000s: It seemed to be reaching a late-ish chapter in its life story and offered a rare chance to observe the death of a large star in a region low in metallicity. However, by the time scientists had the chance to turn the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Paranal, Chile back around to it in 2019 — it's not a slow-turner, just an in-demand device — it was utterly gone without a trace. But how?

The two leading theories about what happened are that either it's still there, still erupting its way through its death throes, with less luminosity and perhaps obscured by dust, or it just up and collapsed into a black hole without going through a supernova stage. "If true, this would be the first direct detection of such a monster star ending its life in this manner," says Andrew Allan of Trinity College Dublin, Ireland, leader of the observation team whose study is published in Monthly Notices of the Royal Astronomical Society.

So, em...

Between astronomers' last look in 2011 and 2019 is a large enough interval of time for something to happen. Not that 2001 (when it was first observed) or 2019 have much meaning, since we're always watching the past out there and the Kinman Dwarf Galaxy is 75 million light years away. We often think of cosmic events as slow-moving phenomena because so often their follow-on effects are massive and unfold to us over time. But things happen just as fast big as small. The number of things that happened in the first 10 millionth of a trillionth of a trillionth of a trillionth of a second after the Big Bang, for example, is insane.

In any event, the Kinsman Dwarf Galaxy, or PHL 293B, is far way, too far for astronomers to directly observe its stars. Their presence can be inferred from spectroscopic signatures — specifically, PHL 293B between 2001 and 2011 consistently featured strong signatures of hydrogen that indicated the presence of a massive "luminous blue variable" (LBV) star about 2.5 times more brilliant than our Sun. Astronomers suspect that some very large stars may spend their final years as LBVs.

Though LBVs are known to experience radical shifts in spectra and brightness, they reliably leave specific traces that help confirm their ongoing presence. In 2019 the hydrogen signatures, and such traces, were gone. Allan says, "It would be highly unusual for such a massive star to disappear without producing a bright supernova explosion."

The Kinsman Dwarf Galaxy, or PHL 293B, is one of the most metal-poor galaxies known. Explosive, massive, Wolf-Rayet stars are seldom seen in such environments — NASA refers to such stars as those that "live fast, die hard." Red supergiants are also rare to low Z environments. The now-missing star was looked to as a rare opportunity to observe a massive star's late stages in such an environment.

Celestial sleuthing

In August 2019, the team pointed the four eight-meter telescopes of ESO's ESPRESSO array simultaneously toward the LBV's former location: nothing. They also gave the VLT's X-shooter instrument a shot a few months later: also nothing.

Still pursuing the missing star, the scientists acquired access to older data for comparison to what they already felt they knew. "The ESO Science Archive Facility enabled us to find and use data of the same object obtained in 2002 and 2009," says Andrea Mehner, an ESO staff member who worked on the study. "The comparison of the 2002 high-resolution UVES spectra with our observations obtained in 2019 with ESO's newest high-resolution spectrograph ESPRESSO was especially revealing, from both an astronomical and an instrumentation point of view."

Examination of this data suggested that the LBV may have indeed been winding up to a grand final sometime after 2011.

Team member Jose Groh, also of Trinity College, says "We may have detected one of the most massive stars of the local Universe going gently into the night. Our discovery would not have been made without using the powerful ESO 8-meter telescopes, their unique instrumentation, and the prompt access to those capabilities following the recent agreement of Ireland to join ESO."

Combining the 2019 data with contemporaneous Hubble Space Telescope (HST) imagery leaves the authors of the reports with the sense that "the LBV was in an eruptive state at least between 2001 and 2011, which then ended, and may have been followed by a collapse into a massive BH without the production of an SN. This scenario is consistent with the available HST and ground-based photometry."

Or...

A star collapsing into a black hole without a supernova would be a rare event, and that argues against the idea. The paper also notes that we may simply have missed the star's supernova during the eight-year observation gap.

LBVs are known to be highly unstable, so the star dropping to a state of less luminosity or producing a dust cover would be much more in the realm of expected behavior.

Says the paper: "A combination of a slightly reduced luminosity and a thick dusty shell could result in the star being obscured. While the lack of variability between the 2009 and 2019 near-infrared continuum from our X-shooter spectra eliminates the possibility of formation of hot dust (⪆1500 K), mid-infrared observations are necessary to rule out a slowly expanding cooler dust shell."

The authors of the report are pretty confident the star experienced a dramatic eruption after 2011. Beyond that, though:

"Based on our observations and models, we suggest that PHL 293B hosted an LBV with an eruption that ended sometime after 2011. This could have been followed by
(1) a surviving star or
(2) a collapse of the LBV to a BH [black hole] without the production of a bright SN, but possibly with a weak transient."

Future of Learning

Changing the way we grade students could trigger a wave of innovation

How students apply what they've learned is more important than a letter or number grade.

Scroll down to load more…
Quantcast