Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

What Know-It-Alls Don’t Know, or the Illusion of Competence

Beavis And Butt-Head. (Photo By Getty Images)

One day in 1995, a large, heavy middle-aged man robbed two Pittsburgh banks in broad daylight. He didn't wear a mask or any sort of disguise. And he smiled at surveillance cameras before walking out of each bank. Later that night, police arrested a surprised McArthur Wheeler. When they showed him the surveillance tapes, Wheeler stared in disbelief. 'But I wore the juice,' he mumbled. Apparently, Wheeler thought that rubbing lemon juice on his skin would render him invisible to videotape cameras. After all, lemon juice is used as invisible ink so, as long as he didn't come near a heat source, he should have been completely invisible.


Police concluded that Wheeler was not crazy or on drugs – just incredibly mistaken.

The saga caught the eye of the psychologist David Dunning at Cornell University, who enlisted his graduate student, Justin Kruger, to see what was going on. They reasoned that, while almost everyone holds favourable views of their abilities in various social and intellectual domains, some people mistakenly assess their abilities as being much higher than they actually are. This 'illusion of confidence' is now called the 'Dunning-Kruger effect', and describes the cognitive bias to inflate self-assessment.

To investigate this phenomenon in the lab, Dunning and Kruger designed some clever experiments. In one study, they asked undergraduate students a series of questions about grammar, logic and jokes, and then asked each student to estimate his or her score overall, as well as their relative rank compared to the other students. Interestingly, students who scored the lowest in these cognitive tasks always overestimated how well they did – by a lot. Students who scored in the bottom quartile estimated that they had performed better than two-thirds of the other students!

This 'illusion of confidence' extends beyond the classroom and permeates everyday life. In a follow-up study, Dunning and Kruger left the lab and went to a gun range, where they quizzed gun hobbyists about gun safety. Similar to their previous findings, those who answered the fewest questions correctly wildly overestimated their knowledge about firearms. Outside of factual knowledge, though, the Dunning-Kruger effect can also be observed in people's self-assessment of a myriad of other personal abilities. If you watch any talent show on television today, you will see the shock on the faces of contestants who don't make it past auditions and are rejected by the judges. While it is almost comical to us, these people are genuinely unaware of how much they have been misled by their illusory superiority.

Sure, it's typical for people to overestimate their abilities. One study found that 80 per cent of drivers rate themselves as above average – a statistical impossibility. And similar trends have been found when people rate their relative popularity and cognitive abilities. The problem is that when people are incompetent, not only do they reach wrong conclusions and make unfortunate choices but, also, they are robbed of the ability to realise their mistakes. In a semester-long study of college students, good students could better predict their performance on future exams given feedback about their scores and relative percentile. However, the poorest performers showed no recognition, despite clear and repeated feedback that they were doing badly. Instead of being confused, perplexed or thoughtful about their erroneous ways, incompetent people insist that their ways are correct. As Charles Darwin wrote in The Descent of Man (1871): 'Ignorance more frequently begets confidence than does knowledge.'

Interestingly, really smart people also fail to accurately self-assess their abilities. As much as D- and F-grade students overestimate their abilities, A-grade students underestimate theirs. In their classic study, Dunning and Kruger found that high-performing students, whose cognitive scores were in the top quartile, underestimated their relative competence. These students presumed that if these cognitive tasks were easy for them, then they must be just as easy or even easier for everyone else. This so-called 'imposter syndrome' can be likened to the inverse of the Dunning-Kruger effect, whereby high achievers fail to recognise their talents and think that others are equally competent. The difference is that competent people can and do adjust their self-assessment given appropriate feedback, while incompetent individuals cannot.

And therein lies the key to not ending up like the witless bank robber. Sometimes we try things that lead to favourable outcomes, but other times – like the lemon juice idea – our approaches are imperfect, irrational, inept or just plain stupid. The trick is to not be fooled by illusions of superiority and to learn to accurately reevaluate our competence. After all, as Confucius reportedly said, real knowledge is knowing the extent of one's ignorance.

Kate Fehlhaber

--

This article was originally published at Aeon and has been republished under Creative Commons.

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

Gear
  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less
Videos

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…
Quantcast