Five foods that increase your psychological well-being

These five main food groups are important for your brain's health and likely to boost the production of feel-good chemicals.

We all know eating “healthy” food is good for our physical health and can decrease our risk of developing diabetes, cancer, obesity and heart disease. What is not as well known is that eating healthy food is also good for our mental health and can decrease our risk of depression and anxiety.


Mental health disorders are increasing at an alarming rate and therapies and medications cost $US2.5 trillion dollars a year globally.

There is now evidence dietary changes can decrease the development of mental health issues and alleviate this growing burden. Australia’s clinical guidelines recommend addressing diet when treating depression.

Recently there have been major advances addressing the influence certain foods have on psychological well-being. Increasing these nutrients could not only increase personal well-being but could also decrease the cost of mental health issues all around the world.

1. Complex carbohydrates

One way to increase psychological well-being is by fuelling brain cells correctly through the carbohydrates in our food. Complex carbohydrates are sugars made up of large molecules contained within fibre and starch. They are found in fruit, vegetables, and wholegrains and are beneficial for brain health as they release glucose slowly into our system. This helps stabilise our mood.

Simple carbohydrates found in sugary snacks and drinks create sugar highs and lows that rapidly increase and decrease feelings of happiness and produce a negative effect on our psychological well-being.

We often use these types of sugary foods to comfort us when we’re feeling down. But this can create an addiction-like response in the brain, similar to illicit drugs that increase mood for the short term but have negative long-term effects.

Increasing intake of complex carbohydrates and decreasing sugary drinks and snacks could be the first step in increased happiness and well-being.

2. Antioxidants

Oxidation is a normal process our cells carry out to function. Oxidation produces energy for our body and brain. Unfortunately, this process also creates oxidative stress and more of this happens in the brain than any other part of the body.

Chemicals that promote happiness in the brain such as dopamine and serotonin are reduced due to oxidation and this can contribute to a decrease in mental health. Antioxidants found in brightly coloured foods such as fruit and vegetables act as a defence against oxidative stress and inflammation in the brain and body.

Antioxidants also repair oxidative damage and scavenge free radicals that cause cell damage in the brain. Eating more antioxidant-rich foods can increase the feel-good chemicals in our brain and heighten mood.

3. Omega 3

Omega 3 are polyunsaturated fatty acids that are involved in the process of converting food into energy. They are important for the health of the brain and the communication of its feel-good chemicals dopamine, serotonin and norepinephrine.

Omega 3 fatty acids are commonly found in oily fish, nuts, seeds, leafy vegetables, eggs, and in grass fed meats. Omega 3 has been found to increase brain functioning, can slow down the progression of dementia and may improve symptoms of depression.

Omega 3 are essential nutrients that are not readily produced by the body and can only be found in the foods we eat, so it’s imperative we include more foods high in omega 3 in our everyday diet.

4. B vitamins

B vitamins play a large role in the production of our brain’s happiness chemicals serotonin and dopamine and can be found in green vegetables, beans, bananas, and beetroot. High amounts of vitamins B6, B12, and folate in the diet have been known to protect against depression and too low amounts to increase the severity of symptoms.

Vitamin B deficiency can result in a reduced production of happiness chemicals in our brain and can lead to the onset of low mood that could lead to mental health issues over a long period. Increasing B vitamins in our diet could increase the production of the feel good chemicals in our brain which promote happiness and well-being.

5. Prebiotics and probiotics

The trillions of good and bad bacteria living in our tummies also influence our mood, behaviour and brain health. Chemical messengers produced in our stomach influence our emotions, appetite and our reactions to stressful situations.

Prebiotics and probiotics found in yoghurt, cheese and fermented foods such as kombucha, sauerkraut and kimchi work on the same pathways in the brain as antidepressant medications and studies have found they might have similar effects.

Prebiotics and Probiotics have been found to suppress immune reactions in the body, reduce inflammation in the braindecrease depressed and anxious states and elevate happy emotions.

Incorporating these foods into our diet will not only increase our physical health but will have beneficial effects on our mental health, including reducing our risk of disorders such as depression and anxiety.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Big Think Edge
  • The meaning of the word 'confidence' seems obvious. But it's not the same as self-esteem.
  • Confidence isn't just a feeling on your inside. It comes from taking action in the world.
  • Join Big Think Edge today and learn how to achieve more confidence when and where it really matters.
Videos
  • Prejudice is typically perpetrated against 'the other', i.e. a group outside our own.
  • But ageism is prejudice against ourselves — at least, the people we will (hopefully!) become.
  • Different generations needs to cooperate now more than ever to solve global problems.


Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.

Scientists see 'rarest event ever recorded' in search for dark matter

The team caught a glimpse of a process that takes 18,000,000,000,000,000,000,000 years.

Image source: Pixabay
Surprising Science
  • In Italy, a team of scientists is using a highly sophisticated detector to hunt for dark matter.
  • The team observed an ultra-rare particle interaction that reveals the half-life of a xenon-124 atom to be 18 sextillion years.
  • The half-life of a process is how long it takes for half of the radioactive nuclei present in a sample to decay.
Keep reading Show less