"Game changer" superconductor discovered to power future computers

Scientists from John Hopkins find a material for quantum computing.

"Game changer" superconductor discovered to power future computers

A qubit can exist simultaneously between two states. Schrodinger's cat is a well-known example of a qubit. This thought experiment involves a hypothetical cat that can be both dead and alive. In a similar way, a flux qubit, or a ring made of a superconducting material, can have electric current flowing both clockwise and counterclockwise simultaneously.

Credit: Yufan Li
  • Researchers from John Hopkins University discovered a new superconducting material.
  • The material, called β-Bi2Pd, can create flex qubits, necessary for quantum computing.
  • Next for the scientists is looking for Majorana fermions.


Quantum computers may be closer to reality thanks to a discovery by researchers from John Hopkins University. Their recent paper, published in Science, describes their find of a superconducting material that can be the basis of the computers of the future.

The big difference between our contemporary computers and quantum computers is that instead of using bits of either "0" or "1" to store a piece of information, the quantum computers will employ quantum mechanics. They will store data in quantum bits (known as "qubits"). Such qubits exist in a superposition of two states, where both zero and one can be represented at the same time.

This technology, supercharging computational speed, could make quantum computers immensely superior to current computers, especially in such fields as artificial intelligence, predicting weather, the stock market, developing cures for illnesses, military applications and others.

What the John Hopkins scientists found is a way to create a qubit from a ring made out of a superconducting material known as β-Bi2Pd, which naturally exists in a quantum state. Usually you would need to add magnetic fields to achieve this effect, a fact that makes the "flux qubit" created from this substance a possible "game changer," said Chia-Ling Chien, Professor of Physics at The Johns Hopkins University and the paper's co-author.

In their study, the researchers observed that β-Bi2Pd exists between two states, with the current able to simultaneously circulate both clockwise and counterclockwise through its ring.

The scientists are most excited about the practicality of utilizing such a material.

Quantum Computing 2019 Update

Quantum computing overview that includes main concepts, recent developments from IBM, Intel, Google, Microsoft, D-Wave, Rigetti and other pioneers.

Much more research lies ahead, however, before the era of quantum computers is upon us. Next for the researchers is looking for Majorana fermions within β-Bi2Pd. Finding these theoretical particles is seen as an important milestone in quantum computing. What's significant is that they are anti-particles of themselves and can lead to error-free topological quantum computers.

The paper's first author. Yufan Li, a postdoctoral fellow in the Department of Physics & Astronomy at The Johns Hopkins University, thinks that discovering the special properties of β-Bi2Pd bodes well for finding within it the fermions.

"Ultimately, the goal is to find and then manipulate Majorana fermions, which is key to achieving fault-tolerant quantum computing for truly unleashing the power of quantum mechanics," said Li in a press release.

Xiaoying Xu of Johns Hopkins University; and M.-H. Lee and M.-W. Chu of National Taiwan University were the additional co-authors of the paper.

Check out their new paper, published October 11th, in Science Magazine.

Live on Thursday: Learn innovation with 3-star Michelin chef Dominique Crenn

Dominique Crenn, the only female chef in America with three Michelin stars, joins Big Think Live this Thursday at 1pm ET.

Big Think LIVE

Add event to your calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo


Keep reading Show less

Physicists solve a 140-year-old mystery

Scientists discover the inner workings of an effect that will lead to a new generation of devices.

Carrier-resolved photo-Hall effect.

Credit: IBM
Surprising Science
  • Researchers discover a method of extracting previously unavailable information from superconductors.
  • The study builds on a 19th-century discovery by physicist Edward Hall.
  • The research promises to lead to a new generation of semiconductor materials and devices.
Keep reading Show less

Want students to cheat less? Science says treat them justly

Students who think the world is just cheat less, but they need to experience justice to feel that way.

A student tries to cheat.

Credit: Roman Pelesh/Shutterstock
Surprising Science
  • Students in German and Turkish universities who believed the world is just cheated less than their pessimistic peers.
  • The tendency to think the world is just is related to the occurence of experiences of justice.
  • The findings may prove useful in helping students adjust to college life.
Keep reading Show less

A key COVID-19 immune response in children has been identified

This could change how researchers approach vaccine development.

A South Korean child wears a mask to prevent catching the coronavirus (COVID-19) while riding a scooter on February 27, 2020 in Seoul, South Korea.

Photo by Chung Sung-Jun/Getty Images
Coronavirus
  • The reason children suffer less from the novel coronavirus has remained mysterious.
  • Researchers identified a cytokine, IL-17A, which appears to protect children from the ravages of COVID-19.
  • This cytokine response could change how researchers approach vaccine development.
Keep reading Show less
Scroll down to load more…
Quantcast