Big ideas.
Once a week.
Subscribe to our weekly newsletter.
A.I. is translating messages of long-lost languages
MIT and Google researchers use deep learning to decipher ancient languages.

- Researchers from MIT and Google Brain discover how to use deep learning to decipher ancient languages.
- The technique can be used to read languages that died long ago.
- The method builds on the ability of machines to quickly complete monotonous tasks.
There are about 6,500-7,000 languages currently spoken in the world. But that's less than a quarter of all the languages people spoke over the course of human history. That total number is around 31,000 languages, according to some linguistic estimates. Every time a language is lost, so goes that way of thinking, of relating to the world. The relationships, the poetry of life uniquely described through that language are lost too. But what if you could figure out how to read the dead languages? Researchers from MIT and Google Brain created an AI-based system that can accomplish just that.
While languages change, many of the symbols and how the words and characters are distributed stay relatively constant over time. Because of that, you could attempt to decode a long-lost language if you understood its relationship to a known progenitor language. This insight is what allowed the team which included Jiaming Luo and Regina Barzilay from MIT and Yuan Cao from Google's AI lab to use machine learning to decipher the early Greek language Linear B (from 1400 BC) and a cuneiform Ugaritic (early Hebrew) language that's also over 3,000 years old.
Linear B was previously cracked by a human – in 1953, it was deciphered by Michael Ventris. But this was the first time the language was figured out by a machine.
The approach by the researchers focused on 4 key properties related to the context and alignment of the characters to be deciphered – distributional similarity, monotonic character mapping, structural sparsity and significant cognate overlap.
They trained the AI network to look for these traits, achieving the correct translation of 67.3% of Linear B cognates (word of common origin) into their Greek equivalents.
What AI can potentially do better in such tasks, according to MIT Technology Review, is that it can simply take a brute force approach that would be too exhausting for humans. They can attempt to translate symbols of an unknown alphabet by quickly testing it against symbols from one language after another, running them through everything that is already known.
Next for the scientists? Perhaps the translation of Linear A - the Ancient Greek language that no one has succeeded in deciphering so far.
You can check out their paper "Neural Decipherment via Minimum-Cost Flow: from Ugaritic to Linear B" here.
Noam Chomsky on Language’s Great Mysteries

Your body’s full of stuff you no longer need. Here's a list.
Evolution doesn't clean up after itself very well.
- An evolutionary biologist got people swapping ideas about our lingering vestigia.
- Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
- Here are the six traits that inaugurated the fun.
The plica semilunaris
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwMS9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY3NDg5NTg1NX0.kdBYMvaEzvCiJjcLEPgnjII_KVtT9RMEwJFuXB68D8Q/img.png?width=980" id="59914" width="429" height="350" data-rm-shortcode-id="b11e4be64c5e1f58bf4417d8548bedc7" data-rm-shortcode-name="rebelmouse-image" />The human eye in alarming detail. Image source: Henry Gray / Wikimedia commons
<p>At the inner corner of our eyes, closest to the nasal ridge, is that little pink thing, which is probably what most of us call it, called the caruncula. Next to it is the plica semilunairs, and it's what's left of a third eyelid that used to — ready for this? — blink horizontally. It's supposed to have offered protection for our eyes, and some birds, reptiles, and fish have such a thing.</p>Palmaris longus
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMzQ1NjUwMn0.dVor41tO_NeLkGY9Tx46SwqhSVaA8HZQmQAp532xLxA/img.jpg?width=980" id="879be" width="1920" height="2560" data-rm-shortcode-id="4089a32ea9fbb1a0281db14332583ccd" data-rm-shortcode-name="rebelmouse-image" />Palmaris longus muscle. Image source: Wikimedia commons
<p> We don't have much need these days, at least most of us, to navigate from tree branch to tree branch. Still, about 86 percent of us still have the wrist muscle that used to help us do it. To see if you have it, place the back of you hand on a flat surface and touch your thumb to your pinkie. If you have a muscle that becomes visible in your wrist, that's the palmaris longus. If you don't, consider yourself more evolved (just joking).</p>Darwin's tubercle
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgxMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0ODUyNjA1MX0.8RuU-OSRf92wQpaPPJtvFreOVvicEwn39_jnbegiUOk/img.jpg?width=980" id="687a0" width="819" height="1072" data-rm-shortcode-id="ff5edf0a698e0681d11efde1d7872958" data-rm-shortcode-name="rebelmouse-image" />Darwin's tubercle. Image source: Wikimedia commons
<p> Yes, maybe the shell of you ear does feel like a dried apricot. Maybe not. But there's a ridge in that swirly structure that's a muscle which allowed us, at one point, to move our ears in the direction of interesting sounds. These days, we just turn our heads, but there it is.</p>Goosebumps
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNzEyNTc2Nn0.aVMa5fsKgiabW5vkr7BOvm2pmNKbLJF_50bwvd4aRo4/img.jpg?width=980" id="d8420" width="1440" height="960" data-rm-shortcode-id="8827e55511c8c3aed8c36d21b6541dbd" data-rm-shortcode-name="rebelmouse-image" />Goosebumps. Photo credit: Tyler Olson via Shutterstock
<p>It's not entirely clear what purpose made goosebumps worth retaining evolutionarily, but there are two circumstances in which they appear: fear and cold. For fear, they may have been a way of making body hair stand up so we'd appear larger to predators, much the way a cat's tail puffs up — numerous creatures exaggerate their size when threatened. In the cold, they may have trapped additional heat for warmth.</p>Tailbone
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY3MzQwMjc3N30.nBGAfc_O9sgyK_lOUo_MHzP1vK-9kJpohLlj9ax1P8s/img.jpg?width=980" id="9a2f6" width="1440" height="1440" data-rm-shortcode-id="4fe28368d2ed6a91a4c928d4254cc02a" data-rm-shortcode-name="rebelmouse-image" />Coccyx.
Image source: Decade3d-anatomy online via Shutterstock
<p>Way back, we had tails that probably helped us balance upright, and was useful moving through trees. We still have the stump of one when we're embryos, from 4–6 weeks, and then the body mostly dissolves it during Weeks 6–8. What's left is the coccyx.</p>The palmar grasp reflex
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMyMC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjY0MDY5NX0.OSwReKLmNZkbAS12-AvRaxgCM7zyukjQUaG4vmhxTtM/img.jpg?width=980" id="8804c" width="1440" height="960" data-rm-shortcode-id="67542ee1c5a85807b0a7e63399e44575" data-rm-shortcode-name="rebelmouse-image" />Palmar reflex activated! Photo credit: Raul Luna on Flickr
<p> You've probably seen how non-human primate babies grab onto their parents' hands to be carried around. We used to do this, too. So still, if you touch your finger to a baby's palm, or if you touch the sole of their foot, the palmar grasp reflex will cause the hand or foot to try and close around your finger.</p>Other people's suggestions
<p>Amir's followers dove right in, offering both cool and questionable additions to her list. </p>Fangs?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Lower mouth plate behind your teeth. Some have protruding bone under the skin which is a throw back to large fangs. Almost like an upsidedown Sabre Tooth.</p>— neil crud (@neilcrud66) <a href="https://twitter.com/neilcrud66/status/1085606005000601600?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hiccups
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sure: <a href="https://t.co/DjMZB1XidG">https://t.co/DjMZB1XidG</a></p>— Stephen Roughley (@SteBobRoughley) <a href="https://twitter.com/SteBobRoughley/status/1085529239556968448?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hypnic jerk as you fall asleep
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">What about when you “jump” just as you’re drifting off to sleep, I heard that was a reflex to prevent falling from heights.</p>— Bann face (@thebanns) <a href="https://twitter.com/thebanns/status/1085554171879788545?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> <p> This thing, often called the "alpha jerk" as you drop into alpha sleep, is properly called the hypnic jerk,. It may actually be a carryover from our arboreal days. The <a href="https://www.livescience.com/39225-why-people-twitch-falling-asleep.html" target="_blank" data-vivaldi-spatnav-clickable="1">hypothesis</a> is that you suddenly jerk awake to avoid falling out of your tree.</p>Nails screeching on a blackboard response?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Everyone hate the sound of fingernails on a blackboard. It's _speculated_ that this is a vestigial wiring in our head, because the sound is similar to the shrill warning call of a chimp. <a href="https://t.co/ReyZBy6XNN">https://t.co/ReyZBy6XNN</a></p>— Pet Rock (@eclogiter) <a href="https://twitter.com/eclogiter/status/1085587006258888706?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Ear hair
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Ok what is Hair in the ears for? I think cuz as we get older it filters out the BS.</p>— Sarah21 (@mimix3) <a href="https://twitter.com/mimix3/status/1085684393593561088?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Nervous laughter
<blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">You may be onto something. Tooth-bearing with the jaw clenched is generally recognized as a signal of submission or non-threatening in primates. Involuntary smiling or laughing in tense situations might have signaled that you weren’t a threat.</p>— Jager Tusk (@JagerTusk) <a href="https://twitter.com/JagerTusk/status/1085316201104912384?ref_src=twsrc%5Etfw">January 15, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Um, yipes.
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sometimes it feels like my big toe should be on the side of my foot, was that ever a thing?</p>— B033? K@($ (@whimbrel17) <a href="https://twitter.com/whimbrel17/status/1085559016011563009?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Godzilla vs. Kong: A morphologist chooses the real winner
Ultimately, this is a fight between a giant reptile and a giant primate.
The 2021 film “Godzilla vs. Kong" pits the two most iconic movie monsters of all time against each other. And fans are now picking sides.
How do you tell reality from a deepfake?
The more you see them, the better you get at spotting the signs.
Ancient cave artists were getting high on hypoxia
A new study says the reason cave paintings are in such remote caverns was the artists' search for transcendence.
