Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Something weird and wonderful is at a Paris zoo

The blob that's astonishing science gets its own exhibit.

Image source: Simia Attentive/Shutterstock
  • In recognition of its amazing traits, a zoo has just invited slime mold into its ranks.
  • Neither plant, and probably not a fungus, slime molds may represent a major turning point in our understanding of intelligence.
  • Of course, the French zoo is calling it "Le Blob."

It acts a bit like a fungus, but fungi are no longer considered plants, but rather exemplars of their own classification kingdom. Still, though, it's not that much like fungi. Current thinking is that its amoeba-like behavior makes it more like an animal, and a fascinating one that raises some profound questions. Though there's plenty of controversy surrounding the moral validity of zoos, earning its place in one must still be considered a promotion of sorts. So congratulations, slime mold, and welcome to Parc Zoologique de Paris!

Meet Le Blob

Image source: yamaoyaji/Shutterstock

Known informally as Le Blob, the Parisian ambassador of the phylum Myxomycetes is actually a sample of Physarum polycephalum. It's certainly among the park's most exotic inhabitants, and maybe the type of organism you'd prefer to become acquainted with in a zoo, rather than out in the world, where it can grow up to several feet in size. Slime molds are roughly as common as tardigrades, and like water bears, they're practically indestructible: Not only can one heal itself in a couple of minutes after being split in half, but it can also dry out and seemingly die, only to spring back to life upon re-moistening.

Slime mold isn't pretty, at least until one views it at microscopic scale, where its tiny "fingers," limbs called pseudopods, exhibit a definite delicacy. To our eyes, it's an amorphous, yellow, um, thing, that's been described as looking like dog vomit. It's only that color in its early stages, though: Slime mold later turns gray, and then dissolves into a brown powder.

The unicellular organism is something like a big bag of nuclei, merging as it does with other slime molds it encounters. One of its affectionate monikers is the "many-headed slime." Despite the fact that it lives sans eyes, mouth, or stomach, it moves to acquire its food, mostly bacteria, yeast, and fungi.

Another one of slime mold's headline traits is the manner in which it reproduces. Le Blob releases spores that develop into one of 720 types of different sex cells that pair off with genetically matching sex cells to reproduce.

The really mind-blowing thing about slime molds — even calling into question the meaning of the word "mind" itself — is that it can formulate strategies for getting past obstacles and to its meal, and it can learn and remember its routes despite having no brain whatsoever (that we know of) and no neurons. It's such unexpected behavior that some scientists suggest that it sets the meaning of the words "learn" and "remember" themselves tumbling down a semantic rabbit hole.

But wait, there's more. As the zoo's Bruno David says, "If you merge two blobs, the one that has learned will transmit its knowledge to the other." What?

Brainless and smart

We've written before about the amazing intelligence of P. polycephalum, a characteristic which alone makes it worthy of zoo visitor's attention, perhaps especially in France, where its smarts were discovered. "The blob is a living being which belongs to one of nature's mysteries," says David, in what may be an understatement.

The studies that revealed what Le Blob can do were performed at Toulouse University's Research Centre on Animal Cognition (CNRS). Scientists there, led by Audrey Dussutour, above, demonstrated slime mold's ability to exhibit habituated learning, and even to pass it to other slime molds.

In the tests, slime molds were blocked off from a favorite food, an oats and agar mixture, by barriers composed of three substances they find repellently bitter: salt, caffeine, and quinine. (Not harmful, just nasty to slime molds.) The slime molds, after a brief period of trying them out, soon learned they could safely traverse these barriers to no ill effect, and in a few days weren't even slowed down by them.

When the subjects were allowed to merge with other slime molds that had not been habituated to the contaminates, the resulting blob moved right across the barriers without hesitation. (During merging, a prominent vein between two slimes suggested a possible pathway for exchange of knowledge.)

As far as learning goes, slime molds were then allowed to dry out and "die," and demonstrated that upon resuscitation their food-acquisition strategy remarkably remained.

It may be that blobs are generally pretty great at brainless-teasers altogether. A separate study done at Keio University in Japan found that they're better than some computer algorithms at solving the "Traveling Salesman Problem."

Is it learning?

Image source: flickr user Björn S…

Obviously, an organism learning and remembering without a brain calls into question our assumption that brains and neurons are required. As Dussutour says, "that such organisms have the capacity to learn has considerable implications beyond recognizing learning in nonneural systems."

According to Chris Reid, of Macquarie University in Australia, "By classical definitions of habituation, this primitive unicellular organism is learning, just as animals with brains do." He adds, "Most neuroscientists I have talked to about slime mold intelligence are quite happy to accept that the experiments are valid and show similar functional outcomes to the same experiments performed on animals with brains."

Not surprisingly, not everyone is convinced. Says Tufts' University's Michael Levin, "Neuroscientists are objecting to the 'devaluing' of the specialness of the brain." Suggesting they might relax, he adds, "Brains are great, but we have to remember where they came from. Neurons evolved from nonneural cells, they did not magically appear."

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

Gear
  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less
Videos

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…
Quantcast