New hypothesis argues the universe simulates itself into existence

A physics paper proposes neither you nor the world around you are real.

Tetrahedrons in the sky above New York City

Tetrahedrons representing the quasicrystalline spin network (QSN), the fundamental substructure of spacetime, according to emergence theory.

Credit: Quantum Gravity Institute
  • A new hypothesis says the universe self-simulates itself in a "strange loop".
  • A paper from the Quantum Gravity Research institute proposes there is an underlying panconsciousness.
  • The work looks to unify insight from quantum mechanics with a non-materialistic perspective.

How real are you? What if everything you are, everything you know, all the people in your life as well as all the events were not physically there but just a very elaborate simulation? Philosopher Nick Bostrom famously considered this in his seminal paper "Are you living in a computer simulation?," where he proposed that all of our existence may be just a product of very sophisticated computer simulations ran by advanced beings whose real nature we may never be able to know. Now a new theory has come along that takes it a step further – what if there are no advanced beings either and everything in "reality" is a self-simulation that generates itself from pure thought?

The physical universe is a "strange loop" says the new paper titled "The Self-Simulation Hypothesis Interpretation of Quantum Mechanics" from the team at the Quantum Gravity Research, a Los Angeles-based theoretical physics institute founded by the scientist and entrepreneur Klee Irwin. They take Bostrom's simulation hypothesis, which maintains that all of reality is an extremely detailed computer program, and ask, rather than relying on advanced lifeforms to create the amazing technology necessary to compose everything within our world, isn't it more efficient to propose that the universe itself is a "mental self-simulation"? They tie this idea to quantum mechanics, seeing the universe as one of many possible quantum gravity models.

One important aspect that differentiates this view relates to the fact that Bostrom's original hypothesis is materialistic, seeing the universe as inherently physical. To Bostrom, we could simply be part of an ancestor simulation, engineered by posthumans. Even the process of evolution itself could just be a mechanism by which the future beings are testing countless processes, purposefully moving humans through levels of biological and technological growth. In this way they also generate the supposed information or history of our world. Ultimately, we wouldn't know the difference.

But where does the physical reality that would generate the simulations comes from, wonder the researchers? Their hypothesis takes a non-materialistic approach, saying that everything is information expressed as thought. As such, the universe "self-actualizes" itself into existence, relying on underlying algorithms and a rule they call "the principle of efficient language."

Under this proposal, the entire simulation of everything in existence is just one "grand thought." How would the simulation itself be originated? It was always there, say the researchers, explaining the concept of "timeless emergentism." According to this idea, time isn't there at all. Instead, the all-encompassing thought that is our reality offers a nested semblance of a hierarchical order, full of "sub-thoughts" that reach all the way down the rabbit hole towards the base mathematics and fundamental particles. This is also where the rule of efficient language comes in, suggesting that humans themselves are such "emergent sub-thoughts" and they experience and find meaning in the world through other sub-thoughts (called "code-steps or actions") in the most economical fashion.

In correspondence with Big Think, physicist David Chester elaborated: "While many scientists presume materialism to be true, we believe that quantum mechanics may provide hints that our reality is a mental construct. Recent advances in quantum gravity, such as seeing spacetime emergent via a hologram, also is a hint that spacetime is not fundamental. This is also compatible with ancient Hermetic and Indian philosophy. In a sense, the mental construct of reality creates spacetime to efficiently understand itself by creating a network of subconscious entities that can interact and explore the totality of possibilities."

The scientists link their hypothesis to panpsychism, which sees everything as thought or consciousness. The authors think that their "panpsychic self-simulation model" can even explain the origin of an overarching panconsciousness at the foundational level of the simulations, which "self-actualizes itself in a strange loop via self-simulation." This panconsciousness also has free will and its various nested levels essentially have the ability to select what code to actualize, while making syntax choices. The goal of this consciousness? To generate meaning or information.

If all of this is hard to grasp, the authors offer another interesting idea that may link your everyday experience to these philosophical considerations. Think of your dreams as your own personal self-simulations, postulates the team. While they are rather primitive (by super-intelligent future AI standards), dreams tend to provide better resolution than current computer modeling and are a great example of the evolution of the human mind. As the scientists write, "What is most remarkable is the ultra-high-fidelity resolution of these mind-based simulations and the accuracy of the physics therein." They point especially to lucid dreams, where the dreamer is aware of being in a dream, as instances of very accurate simulations created by your mind that may be impossible to distinguish from any other reality. To that end, now that you're sitting here reading this article, how do you really know you're not in a dream? The experience seems very high in resolution but so do some dreams. It's not too much of a reach to imagine that an extremely powerful computer that we may be able to make in not-too-distant future could duplicate this level of detail.

The team also proposes that in the coming years we will be able to create designer consciousnesses for ourselves as advancements in gene editing could allow us to make our own mind-simulations much more powerful. We may also see minds emerging that do not require matter at all.

While some of these ideas are certainly controversial in the mainstream science circles, Klee and his team respond that "We must critically think about consciousness and certain aspects of philosophy that are uncomfortable subjects to some scientists."

Want to know more? You can read the full paper online in the journal Entropy.

More on the hypothesis and the backstory of the Quantum Gravity Research institute —

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less

We're creating pigs with human immune systems to study illness

Are "humanized" pigs the future of medical research?

Surprising Science

The U.S. Food and Drug Administration requires all new medicines to be tested in animals before use in people. Pigs make better medical research subjects than mice, because they are closer to humans in size, physiology and genetic makeup.

Keep reading Show less

A new warning to sign to predict volcanic eruptions?

Satellite imagery can help better predict volcanic eruptions by monitoring changes in surface temperature near volcanoes.

Volcano erupting lava, volcanic sky active rock night Ecuador landscape

Credit: Ammit via Adobe Stock
Surprising Science
  • A recent study used data collected by NASA satellites to conduct a statistical analysis of surface temperatures near volcanoes that erupted from 2002 to 2019.
  • The results showed that surface temperatures near volcanoes gradually increased in the months and years prior to eruptions.
  • The method was able to detect potential eruptions that were not anticipated by other volcano monitoring methods, such as eruptions in Japan in 2014 and Chile in 2015.
Keep reading Show less
Politics & Current Affairs

Moral and economic lessons from Mario Kart

The design of a classic video game yields insights on how to address global poverty.