Humanity's most distant space probe captures a strange sound

A new paper reveals that the Voyager 1 spacecraft detected a constant hum coming from outside our Solar System.

Humanity's most distant space probe captures a strange sound

Voyager 1 in interstellar space.

Credit: NASA / JPL - Caltech.
  • Voyager 1, humankind's most distant space probe, detected an unusual "hum" in the data from interstellar space.
  • The noise is likely produced by interstellar gas.
  • Further investigation may reveal the hum's exact origins.


Voyager 1, humanity's most faraway spacecraft, has detected an unusual "hum" coming from outside our solar system. Fourteen billion miles away from Earth, the Voyager's instruments picked up a droning sound that may be caused by plasma (ionized gas) in the vast emptiness of interstellar space. Launched in 1977, the Voyager 1 space probe — along with its twin Voyager 2 — has been traveling farther and farther into space for over 44 years. It has now breached the edge of our solar system, exiting the heliosphere, the bubble-like region of space influenced by the sun. Now, the spacecraft is moving through the "interstellar medium," where it recorded the peculiar sound.

Stella Koch Ocker, a doctoral student in astronomy at Cornell University, discovered the sound in the data from the Voyager's Plasma Wave System (PWS), which measures electron density. Ocker called the drone coming from plasma shock waves "very faint and monotone," likely due to the narrow bandwidth of its frequency.

While they think the persistent background hum may be coming from interstellar gas, the researchers don't yet know what exactly is causing it. It might be produced by "thermally excited plasma oscillations and quasi-thermal noise."

The new paper from Ocker and her colleagues at Cornell University and the University of Iowa, published in Nature Astronomy, also proposes that this is not the last we'll hear of the strange noise. The scientists write that "the emission's persistence suggests that Voyager 1 may be able to continue tracking the interstellar plasma density in the absence of shock-generated plasma oscillation events."

Voyager Captures Sounds of Interstellar Space www.youtube.com

The researchers think the droning sound may hold clues to how interstellar space and the heliopause, which can be thought of as the solar's system border, may be affecting each other. When it first entered interstellar space, the PWS instrument reported disturbances in the gas caused by the sun. But in between such eruptions is where the researchers spotted the steady signature made by the near-vacuum.

Senior author James Cordes, a professor of astronomy at Cornell, compared the interstellar medium to "a quiet or gentle rain," adding that "in the case of a solar outburst, it's like detecting a lightning burst in a thunderstorm and then it's back to a gentle rain."

More data from Voyager over the next few years may hold crucial information to the origins of the hum. The findings are already remarkable considering the space probe is functioning on technology from the mid-1970s. The craft has about 70 kilobytes of computer memory. It also carries a Golden Record created by a committee chaired by the late Carl Sagan, who taught at Cornell University. The 12-inch gold-plated copper disk record is essentially a time capsule, meant to tell the story of Earthlings to extraterrestrials. It contains sounds and images that showcase the diversity of Earth's life and culture.

Is the universe a graveyard? This theory suggests humanity may be alone.

Ever since we've had the technology, we've looked to the stars in search of alien life. It's assumed that we're looking because we want to find other life in the universe, but what if we're looking to make sure there isn't any?

According to the Great Filter theory, Earth might be one of the only planets with intelligent life. And that's a good thing (NASA, ESA, and the Hubble Heritage Team [STScI/AURA]).
Surprising Science

Here's an equation, and a rather distressing one at that: N = R* × fP × ne × f1 × fi × fc × L. It's the Drake equation, and it describes the number of alien civilizations in our galaxy with whom we might be able to communicate. Its terms correspond to values such as the fraction of stars with planets, the fraction of planets on which life could emerge, the fraction of planets that can support intelligent life, and so on. Using conservative estimates, the minimum result of this equation is 20. There ought to be 20 intelligent alien civilizations in the Milky Way that we can contact and who can contact us. But there aren't any.

Keep reading Show less

Beyond the two cultures: rethinking science and the humanities

Cross-disciplinary cooperation is needed to save civilization.

Credit: Public domain
13-8
  • There is a great disconnect between the sciences and the humanities.
  • Solutions to most of our real-world problems need both ways of knowing.
  • Moving beyond the two-culture divide is an essential step to ensure our project of civilization.
Keep reading Show less

Stephen Hawking's black hole theory proved right

New study analyzes gravitational waves to confirm the late Stephen Hawking's black hole area theorem.

Model of spiraling black holes that are merging with each other.

Credit: NASA's Goddard Space Flight Center
Surprising Science
  • A new paper confirms Stephen Hawking's black hole area theorem.
  • The researchers used gravitational wave data to prove the theorem.
  • The data came from Caltech and MIT's Advanced Laser Interferometer Gravitational-Wave Observatory.
Keep reading Show less
Quantcast