Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

This fruit reeks, but it may one day power your phone

Ever smell a durian fruit? Don't. Think of it as nature's stinky battery.

Image source: JohnWick2/Shutterstock
  • New research finds that jackfruit and durian, often called the world's smelliest fruit, make outstanding supercapacitors.
  • Supercapacitors are useful because they can be used as infinitely rechargeable batteries.
  • The study, published in the Journal of Energy Storage, also demonstrates the development of carbon aerogels for the bodies of the fruit batteries.

It's said to be delicious, but you probably haven't encountered any durian fruit-scented candles. That's because it smells, as the late gourmand Anthony Bourdain put it, "indescribable, something you will either love or despise…Your breath will smell as if you'd been French-kissing your dead grandmother."

Eye-watering odor aside, Vincent G. Gomes of the University of Sydney and his colleagues have discovered that durian fruit has an amazing and potentially useful property: It's a natural supercapacitor. In a paper published in the Journal of Energy Storage, Gomes explains that supercapacitors are "promising for energy storage due to their superior cycling stability and excellent charge–discharge ability." Unfortunately, they also often suffer from low capacitance and stability. Stinky durian fruit and its cousin, jackfruit, don't have those issues.

We need a better battery

box of batteries

Image source: PandaMath/Shutterstock

Researchers have been trying to move away from existing lithium-ion batteries that contain chemicals whose interactions produce electricity. When those chemicals are depleted, what's left is a little bundle of toxic waste.

A capacitor, on the other hand, stores energy by building up a static electricity charge on the surfaces of two metal plates. (You might think of how static electricity builds up on your hair when you rub a balloon against your head, for a sense of how this works.) However, capacitors can't hold a lot of energy, nor can they hold it for long. Still, they are infinitely rechargeable, unlike lithium-ion solutions.

Supercapacitors begin to address some of these problems. They typically contain metal plates which have more surface-area and are coated with a second layer of activated charcoal or a similar material. This makes them better at soaking up and holding a charge. Still, supercapacitors are expensive to produce and have their own stability issues.

So now imagine one made of durian fruit or jackfruit. Gomes' paper describes the potential:

"The structural precision of natural biomass with their hierarchical pores, developed over millions of years of biological evolution, affords an outstanding resource as a template for the synthesis of carbon-based materials. Their integrated properties of high surface area, in-plane conductivity and interfacial active sites can facilitate electrochemical reactions, ionic diffusion and high charge carrier density."

Jacking into durian fruit

Jackfruit and durian

Image source: Pakjira Rongtong/pukao/Shutterstock

The bodies of the fruit batteries are made of aerogels: durian carbon aerogel (DCA) and jackfruit carbon aerogel (JCA). The process of deriving them seems complicated, but hey, science is hard.

First, the researchers scrubbed small bio samples from the spongy core of each fruit. Next, the samples were rinsed with ionized water several times to clean them. Placed in autoclaves, they were steamed hydrothermally for 10 hours at 180° C. After cooling off, they were rinsed again and then freeze-dried in a -80° C vacuum over the course of 24 hours. Following that, they were heated to 800° C and held at that temperature for an hour. Overnight ambient cooling yielding black, highly porous, ultralight aerogels. Easy-peasy.

For electrodes, each DCA and JCA battery was fitted with two electrodes, and two different electrode arrays were tested.

The first array, designed to allow an electrochemical measurement of the batteries' performance, incorporated a pair of glass substrates, each coated with an ink comprised of either DCA or JCA powder, respectively, and mixed with carbon black, polyvinylidene fluoride, or a PVDF binder.

The second electrode array used a pair of glass substrates coated with indium tin oxide, with a prepared PP (Celgard) separator between them. This architecture allowed appraisal of the battery's gravimetric capacitance.

The authors' conclusions

The paper concludes that "both electrodes are attractive candidates for the next generation, high performance, yet low-cost supercapacitors for energy storage devices derived from biowastes." In both the DCA and JCA variants, "the electrodes…displayed long-term cycling stability, and rapid charge–discharge processes. " It turns out that the durian fruit battery has a bit more power-storage capacity than its jackfruit cousin. The paper makes no mention of the final olfactory personality of the batteries.

In addition to offering proof of the potential for using durian fruit and jackfruit for energy storage, the authors point out that for the first time, they've demonstrated the development of carbon aerogels "via a facile, chemical-free, green synthesis procedure."

LIVE ON MONDAY | "Lights, camera, activism!" with Judith Light

Join multiple Tony and Emmy Award-winning actress Judith Light live on Big Think at 2 pm ET on Monday.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

Neom, Saudi Arabia's $500 billion megacity, reaches its next phase

Construction of the $500 billion dollar tech city-state of the future is moving ahead.

Credit: Neom
Technology & Innovation
  • The futuristic megacity Neom is being built in Saudi Arabia.
  • The city will be fully automated, leading in health, education and quality of life.
  • It will feature an artificial moon, cloud seeding, robotic gladiators and flying taxis.
Keep reading Show less

Your emotions are the new hot commodity — and there’s an app for that

Many of the most popular apps are about self-improvement.

Drew Angerer/Getty Images
Personal Growth

Emotions are the newest hot commodity, and we can't get enough.

Keep reading Show less

Study details the negative environmental impact of online shopping

Frequent shopping for single items adds to our carbon footprint.

A truck pulls out of a large Walmart regional distribution center on June 6, 2019 in Washington, Utah.

Photo by George Frey/Getty Images
Politics & Current Affairs
  • A new study shows e-commerce sites like Amazon leave larger greenhouse gas footprints than retail stores.
  • Ordering online from retail stores has an even smaller footprint than going to the store yourself.
  • Greening efforts by major e-commerce sites won't curb wasteful consumer habits. Consolidating online orders can make a difference.
Keep reading Show less
Future of Learning

The key to better quality education? Make students feel valued.

Building a personal connection with students can counteract some negative side effects of remote learning.

Scroll down to load more…
Quantcast