The world's watersheds, mapped in gorgeous detail

Hungarian cartographer travels the world while mapping its treasures.

The world's watersheds, mapped in gorgeous detail
  • Simple idea, stunning result: the world's watersheds in glorious colors.
  • The maps are the work of Hungarian cartographer Robert Szucs.
  • His job: to travel and map the world, one good cause at a time.

These maps are both data-rich and absolutely gorgeous. You're looking at watershed maps, showing the flow of tributary streams into main rivers, and of those water courses into the sea (or final destinations inland). The streams are shown in the Strahler Stream Order Classification, which uses width to indicate the hierarchy of streams. Watersheds (a.k.a. drainage basins or catchment areas) are grouped together by color.

The maps are the work of Hungarian cartographer Robert Szucs, 33, who combines expertise in GIS with a passion for beautiful maps. "GIS is short for Geographic Information Systems. It's a collective word for anything using spatial or geographic data — from monitoring changes in forest cover with satellite data to creating crime density maps for the police," Szucs explains. "In this case, I've used GIS to create artistic maps, which is a beautiful hybrid of the artsy and geeky sides of my personality."

The world

Can you spot the world's ten largest drainage basins? In order of magnitude: Amazon, Congo, Nile, Mississippi, Ob, Parana, Yenisei, Lena, Niger, Amur.

Image source: Grasshopper Geography

Africa

Africa is home to the rivers with the world's second- and third-largest catchment areas: the Congo (in blue), with a basin of 1.44 million square miles (3.73 million km2), and the Nile (in red), with basin area of 1.26 million square miles (3.25 million km2). The Nile is the longest river in Africa, though (4,130 miles; 6,650 km), followed by the Congo: 2,900 miles (4,700 km). The Congo River's alternative name, Zaire, comes from the Kikongo nzadi o nzere ('river swallowing rivers'). Image source: Grasshopper Geography

Europe

The Volga (in yellow) is the river with the biggest catchment area in Europe (just under 545,000 square miles; 1.41 million km2). It flows exclusively through Russia, and the catchment area is entirely within Russia as well. Europe's number two is the Danube (in orange), which flows through 10 countries — more than any other river in the world. Its drainage basin (just over 307,000 square miles; almost 796,000 km2) includes nine more countries. Image: Grasshopper Geography

Germany

The hydrographic map of Germany is dominated by just four major drainage systems: the Danube (in orange) in the south, the Rhine (in blue) in the west, the Elbe (in purple) in the east and the Weser (in green) between the latter two. In Antiquity, the Rhine was the border between the Roman Empire and the Germans. Rome once attempted to shift the border to the Elbe, which would have radically altered the course of history, but it suffered a massive defeat in 9 CE at the Teutoburger Wald (roughly between both rivers). Image: Grasshopper Geography

Great Britain and Ireland

Both Ireland and Great Britain are islands, as a result of which neither boasts a continental-class river. Twenty of the 30 longest British rivers are less than 100 miles (160 km) long. The longest river in Britain is the Severn (220 miles, 354 km), its catchment area shown in blue in the southwest. Ireland's longest river is the Shannon (224 miles, 360 km). Even combined they're not as long as France's Seine (483 miles, 777 km). Image: Grasshopper Geography

United States

Spread-eagled across the central part of the United States, the Mississippi's drainage basin covers all or parts of 32 U.S. states (and two Canadian provinces). The easternmost point of Ol' Man River's catchment area is really far east: Cobb Hill in northern Pennsylvania. Here rises the Allegheny, tributary of the Ohio, which in turn flows into the Mississippi at Cairo, Illinois. Image: Grasshopper Geography

Washington State

Even leaving out the Mississippi, there's enough going on in the rest of North America to keep the eye occupied. Here's a drainage map of Washington State. The big fish in this much smaller pond is the Columbia River (drainage area in blue), the largest river in the Pacific Northwest. Only in the western third of the state is there a colourful counterpoint, in the multitude of smaller river basins that are draining into the Pacific or into Puget Sound. Image: Grasshopper Geography

Australia

At 1,558 miles (2,508 km), the Murray is Australia's longest river. It is often considered in conjunction with the Darling (915 miles, 1,472 km), the country's third-longest river, which flows into the Murray. The Murray-Darling basin (in blue, in the southeast) covers just under 410,000 square miles (1.06 million km2), or 14 percent of Australia's total territory. Don't let that spidery network of river courses in the interior fool you: Australia is the world's driest inhabited continent (Antarctica, bizarrely, is drier). Image: Grasshopper Geography

Russia

Four of the world's largest drainage basins are in Russia: the Ob, Yenisei and Lena (origin of Vladimir I. Ulyanov's nom de guerre, Lenin) entirely and the Amur, shared with China. The Volga may be Europe's longest river, but 84 percent or Russia's surface water is east of the Urals, in Siberia. The sparsely-populated region is traversed by 40 rivers longer than 1,000 km. Combined, the Ob, Yenisey and Lena rivers cover a drainage area of about 8 million km2, discharging nearly 50,000 m3 of water per second in the Arctic. Image: Grasshopper Geography

Szucs has managed to parlay his love for beautiful maps into a job designing them:

"I made a huge elevation map of Eurasia which was used in a documentary about horses and their migrations. There's also a 12-foot wide mural in the making at Louisiana State University, based on one of my maps. And I made some maps for the BBC after they reached out, saying my work inspired a show on rivers. I'm not saying I was jumping on my bed from excitement after any of those requests, but maybe I was."

Szucs is not just a theoretical map enthusiast, but also a practical one. He tries to move to a different country every few months, "donating" his mapmaking skills to worthy causes. He's worked with archeologists on St. Eustatius, an island in the Caribbean, with marine biologists in Alaska, and for an orangutan conservation programme on Borneo, among other destinations.

"My moves are always temporary, linked with volunteering for an NGO. It's a way of developing my skills, but also of seeing the world and experiencing new cultures," Szucs said. Meanwhile, new map ideas bubble up. "My current favourite map as yet only exists in my head as an idea. I might have to learn a few new software applications to make it. Let's hope I can find a way to make it happen. After that, I hope to be back in Alaska for a few months, working with whales again."

Many thanks to Mr. Szucs for sending in these maps. See more at Grasshopper Geography.

Strange Maps #959

Got a strange map? Let me know at strangemaps@gmail.com.

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

COVID and "gain of function" research: should we create monsters to prevent them?

Gain-of-function mutation research may help predict the next pandemic — or, critics argue, cause one.

Credit: Guillermo Legaria via Getty Images
Coronavirus

This article was originally published on our sister site, Freethink.

"I was intrigued," says Ron Fouchier, in his rich, Dutch-accented English, "in how little things could kill large animals and humans."

It's late evening in Rotterdam as darkness slowly drapes our Skype conversation.

This fascination led the silver-haired virologist to venture into controversial gain-of-function mutation research — work by scientists that adds abilities to pathogens, including experiments that focus on SARS and MERS, the coronavirus cousins of the COVID-19 agent.

If we are to avoid another influenza pandemic, we will need to understand the kinds of flu viruses that could cause it. Gain-of-function mutation research can help us with that, says Fouchier, by telling us what kind of mutations might allow a virus to jump across species or evolve into more virulent strains. It could help us prepare and, in doing so, save lives.

Many of his scientific peers, however, disagree; they say his experiments are not worth the risks they pose to society.

A virus and a firestorm

The Dutch virologist, based at Erasmus Medical Center in Rotterdam, caused a firestorm of controversy about a decade ago, when he and Yoshihiro Kawaoka at the University of Wisconsin-Madison announced that they had successfully mutated H5N1, a strain of bird flu, to pass through the air between ferrets, in two separate experiments. Ferrets are considered the best flu models because their respiratory systems react to the flu much like humans.

The mutations that gave the virus its ability to be airborne transmissible are gain-of-function (GOF) mutations. GOF research is when scientists purposefully cause mutations that give viruses new abilities in an attempt to better understand the pathogen. In Fouchier's experiments, they wanted to see if it could be made airborne transmissible so that they could catch potentially dangerous strains early and develop new treatments and vaccines ahead of time.

The problem is: their mutated H5N1 could also cause a pandemic if it ever left the lab. In Science magazine, Fouchier himself called it "probably one of the most dangerous viruses you can make."

Just three special traits

Recreated 1918 influenza virionsCredit: Cynthia Goldsmith / CDC / Dr. Terrence Tumpey / Public domain via Wikipedia

For H5N1, Fouchier identified five mutations that could cause three special traits needed to trigger an avian flu to become airborne in mammals. Those traits are (1) the ability to attach to cells of the throat and nose, (2) the ability to survive the colder temperatures found in those places, and (3) the ability to survive in adverse environments.

A minimum of three mutations may be all that's needed for a virus in the wild to make the leap through the air in mammals. If it does, it could spread. Fast.

Fouchier calculates the odds of this happening to be fairly low, for any given virus. Each mutation has the potential to cripple the virus on its own. They need to be perfectly aligned for the flu to jump. But these mutations can — and do — happen.

"In 2013, a new virus popped up in China," says Fouchier. "H7N9."

H7N9 is another kind of avian flu, like H5N1. The CDC considers it the most likely flu strain to cause a pandemic. In the human outbreaks that occurred between 2013 and 2015, it killed a staggering 39% of known cases; if H7N9 were to have all five of the gain-of-function mutations Fouchier had identified in his work with H5N1, it could make COVID-19 look like a kitten in comparison.

H7N9 had three of those mutations in 2013.

Gain-of-function mutation: creating our fears to (possibly) prevent them

Flu viruses are basically eight pieces of RNA wrapped up in a ball. To create the gain-of-function mutations, the research used a DNA template for each piece, called a plasmid. Making a single mutation in the plasmid is easy, Fouchier says, and it's commonly done in genetics labs.

If you insert all eight plasmids into a mammalian cell, they hijack the cell's machinery to create flu virus RNA.

"Now you can start to assemble a new virus particle in that cell," Fouchier says.

One infected cell is enough to grow many new virus particles — from one to a thousand to a million; viruses are replication machines. And because they mutate so readily during their replication, the new viruses have to be checked to make sure it only has the mutations the lab caused.

The virus then goes into the ferrets, passing through them to generate new viruses until, on the 10th generation, it infected ferrets through the air. By analyzing the virus's genes in each generation, they can figure out what exact five mutations lead to H5N1 bird flu being airborne between ferrets.

And, potentially, people.

"This work should never have been done"

The potential for the modified H5N1 strain to cause a human pandemic if it ever slipped out of containment has sparked sharp criticism and no shortage of controversy. Rutgers molecular biologist Richard Ebright summed up the far end of the opposition when he told Science that the research "should never have been done."

"When I first heard about the experiments that make highly pathogenic avian influenza transmissible," says Philip Dormitzer, vice president and chief scientific officer of viral vaccines at Pfizer, "I was interested in the science but concerned about the risks of both the viruses themselves and of the consequences of the reaction to the experiments."

In 2014, in response to researchers' fears and some lab incidents, the federal government imposed a moratorium on all GOF research, freezing the work.

Some scientists believe gain-of-function mutation experiments could be extremely valuable in understanding the potential risks we face from wild influenza strains, but only if they are done right. Dormitzer says that a careful and thoughtful examination of the issue could lead to processes that make gain-of-function mutation research with viruses safer.

But in the meantime, the moratorium stifled some research into influenzas — and coronaviruses.

The National Academy of Science whipped up some new guidelines, and in December of 2017, the call went out: GOF studies could apply to be funded again. A panel formed by Health and Human Services (HHS) would review applications and make the decision of which studies to fund.

As of right now, only Kawaoka and Fouchier's studies have been approved, getting the green light last winter. They are resuming where they left off.

Pandora's locks: how to contain gain-of-function flu

Here's the thing: the work is indeed potentially dangerous. But there are layers upon layers of safety measures at both Fouchier's and Kawaoka's labs.

"You really need to think about it like an onion," says Rebecca Moritz of the University of Wisconsin-Madison. Moritz is the select agent responsible for Kawaoka's lab. Her job is to ensure that all safety standards are met and that protocols are created and drilled; basically, she's there to prevent viruses from escaping. And this virus has some extra-special considerations.

The specific H5N1 strain Kawaoka's lab uses is on a list called the Federal Select Agent Program. Pathogens on this list need to meet special safety considerations. The GOF experiments have even more stringent guidelines because the research is deemed "dual-use research of concern."

There was debate over whether Fouchier and Kawaoka's work should even be published.

"Dual-use research of concern is legitimate research that could potentially be used for nefarious purposes," Moritz says. At one time, there was debate over whether Fouchier and Kawaoka's work should even be published.

While the insights they found would help scientists, they could also be used to create bioweapons. The papers had to pass through a review by the U.S. National Science Board for Biosecurity, but they were eventually published.

Intentional biowarfare and terrorism aside, the gain-of-function mutation flu must be contained even from accidents. At Wisconsin, that begins with the building itself. The labs are specially designed to be able to contain pathogens (BSL-3 agricultural, for you Inside Baseball types).

They are essentially an airtight cement bunker, negatively pressurized so that air will only flow into the lab in case of any breach — keeping the viruses pushed in. And all air in and out of the lap passes through multiple HEPA filters.

Inside the lab, researchers wear special protective equipment, including respirators. Anyone coming or going into the lab must go through an intricate dance involving stripping and putting on various articles of clothing and passing through showers and decontamination.

And the most dangerous parts of the experiment are performed inside primary containment. For example, a biocontainment cabinet, which acts like an extra high-security box, inside the already highly-secure lab (kind of like the radiation glove box Homer Simpson is working in during the opening credits).

"Many people behind the institution are working to make sure this research can be done safely and securely." — REBECCA MORITZ

The Federal Select Agent program can come and inspect you at any time with no warning, Moritz says. At the bare minimum, the whole thing gets shaken down every three years.

There are numerous potential dangers — a vial of virus gets dropped; a needle prick; a ferret bite — but Moritz is confident that the safety measures and guidelines will prevent any catastrophe.

"The institution and many people behind the institution are working to make sure this research can be done safely and securely," Moritz says.

No human harm has come of the work yet, but the potential for it is real.

"Nature will continue to do this"

They were dead on the beaches.

In the spring of 2014, another type of bird flu, H10N7, swept through the harbor seal population of northern Europe. Starting in Sweden, the virus moved south and west, across Denmark, Germany, and the Netherlands. It is estimated that 10% of the entire seal population was killed.

The virus's evolution could be tracked through time and space, Fouchier says, as it progressed down the coast. Natural selection pushed through gain-of-function mutations in the seals, similarly to how H5N1 evolved to better jump between ferrets in his lab — his lab which, at the time, was shuttered.

"We did our work in the lab," Fouchier says, with a high level of safety and security. "But the same thing was happening on the beach here in the Netherlands. And so you can tell me to stop doing this research, but nature will continue to do this day in, day out."

Critics argue that the knowledge gained from the experiments is either non-existent or not worth the risk; Fouchier argues that GOF experiments are the only way to learn crucial information on what makes a flu virus a pandemic candidate.

"If these three traits could be caused by hundreds of combinations of five mutations, then that increases the risk of these things happening in nature immensely," Fouchier says.

"With something as crucial as flu, we need to investigate everything that we can," Fouchier says, hoping to find "a new Achilles' heel of the flu that we can use to stop the impact of it."

The misguided history of female anatomy

From "mutilated males" to "wandering wombs," dodgy science affects how we view the female body still today.

Credit: Hà Nguyễn via Unsplash
Sex & Relationships
  • The history of medicine and biology often has been embarrassingly wrong when it comes to female anatomy and was surprisingly resistant to progress.
  • Aristotle and the ancient Greeks are much to blame for the mistaken notion of women as cold, passive, and little more than a "mutilated man."
  • Thanks to this dubious science, and the likes of Sigmund Freud, we live today with a legacy that judges women according to antiquated biology and psychology.
Keep reading Show less
Mind & Brain

Why do holidays feel like they're over before they even start?

People tend to reflexively assume that fun events – like vacations – will go by really quickly.

Quantcast