Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Two MIT students just solved Richard Feynman’s famed physics puzzle

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.



Richard Feynman, world-class physicist, bongo player, and writer of letters, once spent an evening trying to break spaghetti into two pieces by bending it at both ends. After hours spent in the kitchen and a great deal of pasta having been wasted, he and his friend Danny Hillis admitted defeat. Even worse, they had no solution for why the spaghetti always broke into at least three pieces.

But science loves a good challenge

The mystery remained unsolved until 2005, when French scientists Basile Audoly and Sebastien Neukirch won an Ig Nobel Prize, an award given to scientists for real work which is of a less serious nature than the discoveries that win Nobel prizes, for finally determining why this happens. Their paper describing the effect is wonderfully funny to read, as it takes such a banal issue so seriously.

They demonstrated that when a rod is bent past a certain point, such as when spaghetti is snapped in half by bending it at the ends, a "snapback effect" is created. This causes energy to reverberate from the initial break to other parts of the rod, often leading to a second break elsewhere.

While this settled the issue of why spaghetti noodles break into three or more pieces, it didn't establish if they always had to break this way. The question of if the snapback could be regulated remained unsettled.

Physicists, being themselves, immediately wanted to try and break pasta into two pieces using this info

Ronald Heisser and Vishal Patil, two graduate students currently at Cornell and MIT respectively, read about Feynman's night of noodle snapping in class and were inspired to try and find what could be done to make sure the pasta always broke in two.

By placing the noodles in a special machine built for the task and recording the bending with a high-powered camera, the young scientists were able to observe in extreme detail exactly what each change in their snapping method did to the pasta. After breaking more than 500 noodles, they found the solution.

The apparatus the MIT researchers built specifically for the task of snapping hundreds of spaghetti sticks.

(Courtesy of the researchers)

The spaghetti will break into two pieces if the snapback is properly dispersed through the noodle by twisting it while it is bent. The twist must be rather severe though, nearly 360°. The two ends of the noodle must then be bought together very slowly.

The twisting adds another wave of energy to the snapback, one which tends to make the noodle straighten out again. When both waves are going through the noodle at the same time, the most intense pressure on the noddle is reduced and the second fracture is prevented.

The results hold true for spaghetti noodles of different diameters, though the scientists note that other pasta noodles might act differently. Having solved the problem of how to properly break spaghetti, they plan to focus on linguine next.

What possible application could this have?

The snapback effect is not limited to uncooked pasta noodles and can be applied to rods of all sorts. The discovery of how to cleanly break them in two could be applied to future engineering projects.

Likewise, knowing how things fragment and fail is always handy to know when you're trying to build things. Carbon Nanotubes, super strong cylinders often hailed as the building material of the future, are also rods which can be better understood thanks to this odd experiment.

Sometimes big discoveries can be inspired by silly questions. If it hadn't been for Richard Feynman bending noodles seventy years ago, we wouldn't know what we know now about how energy is dispersed through rods and how to control their fracturing. While not all silly questions will lead to such a significant discovery, they can all help us learn.


How New York's largest hospital system is predicting COVID-19 spikes

Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.

Credit: Getty Images
Sponsored by Northwell Health
  • The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
  • The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
  • Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
Keep reading Show less

Listen: Scientists re-create voice of 3,000-year-old Egyptian mummy

Scientists used CT scanning and 3D-printing technology to re-create the voice of Nesyamun, an ancient Egyptian priest.

Surprising Science
  • Scientists printed a 3D replica of the vocal tract of Nesyamun, an Egyptian priest whose mummified corpse has been on display in the UK for two centuries.
  • With the help of an electronic device, the reproduced voice is able to "speak" a vowel noise.
  • The team behind the "Voices of the Past" project suggest reproducing ancient voices could make museum experiences more dynamic.
Keep reading Show less

Put on a happy face? “Deep acting” associated with improved work life

New research suggests you can't fake your emotional state to improve your work life — you have to feel it.

Credit: Columbia Pictures
Personal Growth
  • Deep acting is the work strategy of regulating your emotions to match a desired state.
  • New research suggests that deep acting reduces fatigue, improves trust, and advances goal progress over other regulation strategies.
  • Further research suggests learning to attune our emotions for deep acting is a beneficial work-life strategy.
  • Keep reading Show less

    World's oldest work of art found in a hidden Indonesian valley

    Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.

    Pig painting at Leang Tedongnge in Indonesia, made at 45,500 years ago.

    Credit: Maxime Aubert
    Surprising Science
    • Archaeologists find a cave painting of a wild pig that is at least 45,500 years old.
    • The painting is the earliest known work of representational art.
    • The discovery was made in a remote valley on the Indonesian island of Sulawesi.
    Keep reading Show less
    Mind & Brain

    What can Avicenna teach us about the mind-body problem?

    The Persian polymath and philosopher of the Islamic Golden Age teaches us about self-awareness.

    Scroll down to load more…
    Quantcast