Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Two MIT students just solved Richard Feynman’s famed physics puzzle

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.



Richard Feynman, world-class physicist, bongo player, and writer of letters, once spent an evening trying to break spaghetti into two pieces by bending it at both ends. After hours spent in the kitchen and a great deal of pasta having been wasted, he and his friend Danny Hillis admitted defeat. Even worse, they had no solution for why the spaghetti always broke into at least three pieces.

But science loves a good challenge

The mystery remained unsolved until 2005, when French scientists Basile Audoly and Sebastien Neukirch won an Ig Nobel Prize, an award given to scientists for real work which is of a less serious nature than the discoveries that win Nobel prizes, for finally determining why this happens. Their paper describing the effect is wonderfully funny to read, as it takes such a banal issue so seriously.

They demonstrated that when a rod is bent past a certain point, such as when spaghetti is snapped in half by bending it at the ends, a "snapback effect" is created. This causes energy to reverberate from the initial break to other parts of the rod, often leading to a second break elsewhere.

While this settled the issue of why spaghetti noodles break into three or more pieces, it didn't establish if they always had to break this way. The question of if the snapback could be regulated remained unsettled.

Physicists, being themselves, immediately wanted to try and break pasta into two pieces using this info

Ronald Heisser and Vishal Patil, two graduate students currently at Cornell and MIT respectively, read about Feynman's night of noodle snapping in class and were inspired to try and find what could be done to make sure the pasta always broke in two.

By placing the noodles in a special machine built for the task and recording the bending with a high-powered camera, the young scientists were able to observe in extreme detail exactly what each change in their snapping method did to the pasta. After breaking more than 500 noodles, they found the solution.

The apparatus the MIT researchers built specifically for the task of snapping hundreds of spaghetti sticks.

(Courtesy of the researchers)

The spaghetti will break into two pieces if the snapback is properly dispersed through the noodle by twisting it while it is bent. The twist must be rather severe though, nearly 360°. The two ends of the noodle must then be bought together very slowly.

The twisting adds another wave of energy to the snapback, one which tends to make the noodle straighten out again. When both waves are going through the noodle at the same time, the most intense pressure on the noddle is reduced and the second fracture is prevented.

The results hold true for spaghetti noodles of different diameters, though the scientists note that other pasta noodles might act differently. Having solved the problem of how to properly break spaghetti, they plan to focus on linguine next.

What possible application could this have?

The snapback effect is not limited to uncooked pasta noodles and can be applied to rods of all sorts. The discovery of how to cleanly break them in two could be applied to future engineering projects.

Likewise, knowing how things fragment and fail is always handy to know when you're trying to build things. Carbon Nanotubes, super strong cylinders often hailed as the building material of the future, are also rods which can be better understood thanks to this odd experiment.

Sometimes big discoveries can be inspired by silly questions. If it hadn't been for Richard Feynman bending noodles seventy years ago, we wouldn't know what we know now about how energy is dispersed through rods and how to control their fracturing. While not all silly questions will lead to such a significant discovery, they can all help us learn.


This is what aliens would 'hear' if they flew by Earth

A Mercury-bound spacecraft's noisy flyby of our home planet.

Image source: sdecoret on Shutterstock/ESA/Big Think
Surprising Science
  • There is no sound in space, but if there was, this is what it might sound like passing by Earth.
  • A spacecraft bound for Mercury recorded data while swinging around our planet, and that data was converted into sound.
  • Yes, in space no one can hear you scream, but this is still some chill stuff.

First off, let's be clear what we mean by "hear" here. (Here, here!)

Sound, as we know it, requires air. What our ears capture is actually oscillating waves of fluctuating air pressure. Cilia, fibers in our ears, respond to these fluctuations by firing off corresponding clusters of tones at different pitches to our brains. This is what we perceive as sound.

All of which is to say, sound requires air, and space is notoriously void of that. So, in terms of human-perceivable sound, it's silent out there. Nonetheless, there can be cyclical events in space — such as oscillating values in streams of captured data — that can be mapped to pitches, and thus made audible.

BepiColombo

Image source: European Space Agency

The European Space Agency's BepiColombo spacecraft took off from Kourou, French Guyana on October 20, 2019, on its way to Mercury. To reduce its speed for the proper trajectory to Mercury, BepiColombo executed a "gravity-assist flyby," slinging itself around the Earth before leaving home. Over the course of its 34-minute flyby, its two data recorders captured five data sets that Italy's National Institute for Astrophysics (INAF) enhanced and converted into sound waves.

Into and out of Earth's shadow

In April, BepiColombo began its closest approach to Earth, ranging from 256,393 kilometers (159,315 miles) to 129,488 kilometers (80,460 miles) away. The audio above starts as BepiColombo begins to sneak into the Earth's shadow facing away from the sun.

The data was captured by BepiColombo's Italian Spring Accelerometer (ISA) instrument. Says Carmelo Magnafico of the ISA team, "When the spacecraft enters the shadow and the force of the Sun disappears, we can hear a slight vibration. The solar panels, previously flexed by the Sun, then find a new balance. Upon exiting the shadow, we can hear the effect again."

In addition to making for some cool sounds, the phenomenon allowed the ISA team to confirm just how sensitive their instrument is. "This is an extraordinary situation," says Carmelo. "Since we started the cruise, we have only been in direct sunshine, so we did not have the possibility to check effectively whether our instrument is measuring the variations of the force of the sunlight."

When the craft arrives at Mercury, the ISA will be tasked with studying the planets gravity.

Magentosphere melody

The second clip is derived from data captured by BepiColombo's MPO-MAG magnetometer, AKA MERMAG, as the craft traveled through Earth's magnetosphere, the area surrounding the planet that's determined by the its magnetic field.

BepiColombo eventually entered the hellish mangentosheath, the region battered by cosmic plasma from the sun before the craft passed into the relatively peaceful magentopause that marks the transition between the magnetosphere and Earth's own magnetic field.

MERMAG will map Mercury's magnetosphere, as well as the magnetic state of the planet's interior. As a secondary objective, it will assess the interaction of the solar wind, Mercury's magnetic field, and the planet, analyzing the dynamics of the magnetosphere and its interaction with Mercury.

Recording session over, BepiColombo is now slipping through space silently with its arrival at Mercury planned for 2025.

Photo by Martin Adams on Unsplash
Culture & Religion
She was walking down the forest path with a roll of white cloth in her hands. It was trailing behind her like a long veil.
Keep reading Show less

NASA finds water on sunlit moon surface for first time

Water may be far more abundant on the lunar surface than previously thought.

Lunar surface

Credit: Helen_f via AdobeStock
Surprising Science
  • Scientists have long thought that water exists on the lunar surface, but it wasn't until 2018 that ice was first discovered on the moon.
  • A study published Monday used NASA's Stratospheric Observatory for Infrared Astronomy to confirm the presence of molecular water..
  • A second study suggests that shadowy regions on the lunar surface may also contain more ice than previously thought.
Keep reading Show less
Scroll down to load more…
Quantcast