Get smarter, faster. Subscribe to our daily newsletter.
Equity made Estonia an educational front runner
Estonia has combined a belief in learning with equal-access technology to create one of world's best education systems.

- Estonia became a top performer in the most recent PISA, a worldwide study of 15-year-old students' capabilities in math, reading, and science.
- PISA data showed that Estonia has done remarkably well in reducing the gap between a student's socioeconomic background and their access to quality education.
- The country's push toward providing equal-access to learning technology is a modern example of the culture's dedication to equity in education.
As I performed my interviews for this article, one fact was made abundantly clear: Estonians aren't ones to engage in lavish praise and pat-on-the-back congratulations. A far more self-critical culture, they find comfort forgoing the small talk, getting to work, and honing in on areas to improve. But one area where Estonians will simply have to grit and bare the praise is in discussing their education system. Smaller than West Virginia and with a population of 1.3 million, this Baltic state has developed one of the world's best education systems as assessed by the Programme for International Student Assessment (PISA) results.
PISA is the Organization for Economic Cooperation and Development's (OECD) triennial study that measures the reading, mathematics, and science abilities of 15-year-olds across the world. Talks of PISA tend to focus on educational powerhouses such as Finland, Singapore, and Korea, but those looking closely have been noticing Estonia's ascent throughout the years. It began in 2006, and despite a small dip in 2009, the country's scores continued upward in 2012 and 2015.
By 2018, the most recent PISA study, Estonia became Europe's number one performing country and one of the best in the world. Its students placed fifth in reading, eighth in math, and fourth in science, with mean scores in each that were well above the mean. The only education departments to outperform Estonia's were Singapore and a few of China's distinct economic areas, such as Beijing, Shanghai, and Macau.
Such a cohort may make the reason for such scores obvious. Like Singapore and Shanghai, Estonia is both small and relatively affluent; such education departments simply spread out their resources across fewer students. But PISA's data doesn't support this reasoning. While socioeconomic background is an important predictor of academic success, it doesn't play out that more money equals better education. In fact, according to PISA data, Estonia's per student expenditure was 30 percent lower than the OECD average. Conversely, the United States handily outspends many other countries but receives middling PISA scores for its investment.
Then what explains Estonia's ascent? That's an answer that requires untangling a myriad of cultural, social, and historical factors that interconnect in ways difficult to untangle. But one factor stands out. A cultural mindset centered only on excellence in education but the drive to give students equal access to that education.
Estonia's cultural heirloom
A chart showing student performance scores in reading for the 2018 PISA study.
The belief in education's value is ingrained within Estonian culture. As Mailis Reps, the Estonian Minister of Education and Research, told me in an interview, it's an ethos handed down generation to generation, like a cultural heirloom.
"Many generations have had to start from zero all over again. Let it be the war, the regimes, economic reforms, people being deported, people losing their families, or changes to the system," Reps said. "So, education was something that was always given, generation to generation. There's a very strong cultural belief that education is the only thing you cannot take away from a person."
Because education is a constitutional right, Reps informed me, state and local governments ensure that primary education is available to everyone. Lunches, textbooks, transportation, and study materials are provided gratis, with extracurricular activities subsidized so fees remain low. Local municipalities also subsidize pre-primary education. They maintain a social allowance so fees are tied on a parent's financial situation. Parents enduring economic hardships or temporary setbacks can send their little ones to preschool free of charge, while more financial stable families pay a small fee. And even that fee remains small—Reps says it is no more than €91 (about $107).
Under such a comprehensive system, many children start their education careers young, as early as 15 months old. Because pre-primary isn't compulsory, parents have more latitude over how their children attend school: half days, a few days a week, etc. By kindergarten, Estonia has a 91 percent attendance rate. Primary attendance is close to universal.
That system may sound expensive, and like any education system, it takes its share of GDP. But as mentioned, it's not simply a matter of dollars spent. According to the National Center for Education Statistics, in 2016 the United States spent $13,600 per full-time-equivalent student in elementary and secondary education. The OECD average that same year was $9,800. Estonia spent $7,400.
"In many countries, the school's socioeconomic context influences the kind of education children are acquiring, and the quality of schooling can shape the socioeconomic contexts of schools," Andreas Schleicher, the OECD's director for the Directorate of Education and Skills, writes in his assessment of PISA 2018's data. "The result is that in most countries, differences in education outcomes related to social inequalities are stubbornly persistent, and too much talent remains latent."
But despite relatively modest spending, that's less true in Estonia. According Schleicher's assessment, 20 percent of disadvantaged boys did not attain minimum proficiency in reading in all countries except three. Estonia was one of those three. It stood as one of 14 countries in which disadvantaged students have at least a one-in-five chance of having high-achieving schoolmates, a ratio that corresponds to reduced social segregation. And the country joined Australia, Canada, Ireland, and the United Kingdom in having more than 13 percent of its disadvantaged students demonstrate academic resilience, a metric that measures proficient educational outcomes in the face of adversity.
These data point to a weak relationship between student performance and socioeconomic background, a sign that Estonia has lessened the gap between a student's personal situation and their access to quality education.
A Tiger Leap forward
Fourth-grade students learn computer skills in elementary school.
Photo: Sean Gallup/Getty Images
A crucial example of Estonia's dedication to equity can be seen in how it wove digital technology into the learning fabric. In the last two decades, Silicon Valley has had a commanding influence in how we approach and access education, but for many countries, the push toward always-accessible, always-on education hasn't ameliorated many systemic inequalities.
Consider the United States. The U.S. finances schools through local property taxes or federal grants tied to test scores and attendance rates. This leaves schools in well-to-do districts with a lion share of funding and resources. Such lopsided endowments, as noted a 2018 report by the U.S. Commission on Civil Rights, "harm students subject to them" and are "fundamentally inconsistent with the American ideal of public education operating as a means to equalize life opportunity." An inconsistency that the Supreme Court has defended as perfectly in keeping with the U.S. Constitution.
This legacy inequality left many low-income neighborhoods facing another disadvantage at the turn of the century: a lack of access to technology. That reality became starkly apparent in the COVID-19 pandemic. Data from the U.S. Census Bureau suggests that as schools closed, "1 in 10 of the poorest children in the U.S. has little or no access to technology" for learning. For children being raised in a household earning less than $25,000 a year, roughly ten percent have no access to the internet or digital learning devices.
Conversely, Estonia has made internet access available to all students. In the late 1990s, after its independence from Russia, Estonia initiated Tiger Leap. The program invested heavily in building and developing infrastructure for the e-revolution. The push moved many social programs online, such as taxes, voting, and health records, and schools were updated for internet access, computer labs, and the then-latest technologies.
Today, Estonia has made digital literacy a key competency required in its educational outcomes. Learning materials, such as textbooks and assessments, must be available for free in a digital format (known as the e-schoolbag). Even schools in remote areas enjoy access to high-speed internet.
That may sound concerning to parents worried that today's technology has reduced learning to the solitude of screens and mental cubicles. But the Estonian government only provides access to the tools and ensures they work. Schools and teachers have broad autonomy in determining when and how to use them. That is, after all, their expertise.
"We have never forced our teachers to use it, but we have celebrated if they do so," Reps said. "This is one of the things that I advocate a lot. Provide them the possibility, build them the infrastructure, the quality needs to be there. Because if you start downloading and it doesn't work, no young person accepts it."
Teachers of young students, for example, may forgo technological solutions in favor of more analog approaches to develop motor and social skills. Meanwhile, secondary education may lean heavier on online assessments to prepare students for a tech-focused workforce.
Unlike Silicon Valley's push into the U.S. education system—a seeming bid to capitalize as much on student's learning time as their free time—Estonia prefers a more Goldilocks strategy. As Gunda Tire, Estonia's PISA National Project Manager, told me in an interview: "If you look at PISA data about education systems that use a lot of technology, if they use it very extensively, they have lower scores. If they don't use it at all, they also have lower scores. The big challenge is to find the balance."
As we've learned during the pandemic, that's a balance that shifts with circumstance, but by distributing the tools and infrastructure broadly, Estonia has been able to keep its footing. Reps estimates that before the COVID-19 shutdowns, approximately 14 percent of schools regularly used the available digital textbooks. Most preferred the physical counterpart.
But because the digital option was available for ever school, they were able to quickly pivot to a 100-percent use rate. Additionally, years of prioritizing computer literacy development helped teachers gain competency in digital learning tools, and a civil social push identified at-need children to equip them with the devices necessary to learn remotely. As Mart Laidmets, Estonia's secretary general of the Ministry of Education and Research, said in a roundtable on the subject, it looked as though the country had "been preparing for such a crisis for 25 years."
What can we learn from Estonia's success?
While Estonia may not spend as much on a dollar-to-dollar basis, the country has created immense valuable in its system by spreading the educational wealth. Part of that achievement stems from removing barriers to primary education and fostering equal-access to learning technology; however, those are simply examples of the principle of equity at work. Others include well-educated teachers, even at the pre-primary level; granting schools broad autonomy to adapt the national curriculum to suit local and cultural needs; and maintaining at-school support centers so students have access to mentors, psychologists, special needs teachers, and anti-bullying resources. The list goes on.
"The success of any system is sort of like a puzzle," Tire said. "You have to have many pieces and fit them in properly, or you won't see the whole picture."
Is there room for improvement? Of course! Just ask any Estonian. Tire told me that recent PISA data showed a discrepancy in the results between the country's Estonian-speaking students and its Russian-speaking ones. They are looking into the reason for that gap and how to raise scores across the board. When asked the same question, Reps pointed to improving the country's vocational-track education, the integration of practical skills into gymnasium, and research into personalized learning.
When asked what other countries could takeaway from Estonia's example, my interviewees were more cautious. As Reps rightly points out, "Education is so culturally and historically tied. It's very difficult to copy something, and I would be careful to tell any country to copy the Estonian model."
She did offer some facets for consideration, though. She recommends that systems never look at a child as a problem to solve. Instead, it should look to ameliorate issues in their background or experiences. Even though education systems can be expensive, they should always be child-friendly and dedicated toward their growth. Digital technology doesn't create equality de facto; it must be accessible to all. And trust your teachers. "They are amazing human beings. They come to teach; they want to give their best; they want to help their pupils."
In my own research into Estonia's education system, its history, and its successes, I would humbly add one more: Foster a culture that values education and assures its available to everyone.
- Kindergarten Coders and the New Toy Tablets - Big Think ›
- Estonia Builds World's First Nationwide Electric Vehicle Charging ... ›
- Fabulous Colors at the Orkjärve Nature Reserve, Estonia - Big Think ›
‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create
How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.
- A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
- It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
- While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Tribalism and discrimination
<p>One question the "Genetic Pressure" series explores: What would tribalism and discrimination look like in a world with designer babies? As designer babies grow up, they could be noticeably different from other people, potentially being smarter, more attractive and healthier. This could breed resentment between the groups—as it does in the series.</p><p>"[Designer babies] slowly find that 'everyone else,' and even their own parents, becomes less and less tolerable," author Eugene Clark told Big Think. "Meanwhile, everyone else slowly feels threatened by the designer babies."</p><p>For example, one character in the series who was born a designer baby faces discrimination and harassment from "normal people"—they call her "soulless" and say she was "made in a factory," a "consumer product." </p><p>Would such divisions emerge in the real world? The answer may depend on who's able to afford designer baby services. If it's only the ultra-wealthy, then it's easy to imagine how being a designer baby could be seen by society as a kind of hyper-privilege, which designer babies would have to reckon with. </p><p>Even if people from all socioeconomic backgrounds can someday afford designer babies, people born designer babies may struggle with tough existential questions: Can they ever take full credit for things they achieve, or were they born with an unfair advantage? To what extent should they spend their lives helping the less fortunate? </p>Sexuality dilemmas
<p>Sexuality presents another set of thorny questions. If a designer baby industry someday allows people to optimize humans for attractiveness, designer babies could grow up to find themselves surrounded by ultra-attractive people. That may not sound like a big problem.</p><p>But consider that, if designer babies someday become the standard way to have children, there'd necessarily be a years-long gap in which only some people are having designer babies. Meanwhile, the rest of society would be having children the old-fashioned way. So, in terms of attractiveness, society could see increasingly apparent disparities in physical appearances between the two groups. "Normal people" could begin to seem increasingly ugly.</p><p>But ultra-attractive people who were born designer babies could face problems, too. One could be the loss of body image. </p><p>When designer babies grow up in the "Genetic Pressure" series, men look like all the other men, and women look like all the other women. This homogeneity of physical appearance occurs because parents of designer babies start following trends, all choosing similar traits for their children: tall, athletic build, olive skin, etc. </p><p>Sure, facial traits remain relatively unique, but everyone's more or less equally attractive. And this causes strange changes to sexual preferences.</p><p>"In a society of sexual equals, they start looking for other differentiators," he said, noting that violet-colored eyes become a rare trait that genetically engineered humans find especially attractive in the series.</p><p>But what about sexual relationships between genetically engineered humans and "normal" people? In the "Genetic Pressure" series, many "normal" people want to have kids with (or at least have sex with) genetically engineered humans. But a minority of engineered humans oppose breeding with "normal" people, and this leads to an ideology that considers engineered humans to be racially supreme. </p>Regulating designer babies
<p>On a policy level, there are many open questions about how governments might legislate a world with designer babies. But it's not totally new territory, considering the West's dark history of eugenics experiments.</p><p>In the 20th century, the U.S. conducted multiple eugenics programs, including immigration restrictions based on genetic inferiority and forced sterilizations. In 1927, for example, the Supreme Court ruled that forcibly sterilizing the mentally handicapped didn't violate the Constitution. Supreme Court Justice Oliver Wendall Holmes wrote, "… three generations of imbeciles are enough." </p><p>After the Holocaust, eugenics programs became increasingly taboo and regulated in the U.S. (though some states continued forced sterilizations <a href="https://www.uvm.edu/~lkaelber/eugenics/" target="_blank">into the 1970s</a>). In recent years, some policymakers and scientists have expressed concerns about how gene-editing technologies could reanimate the eugenics nightmares of the 20th century. </p><p>Currently, the U.S. doesn't explicitly ban human germline genetic editing on the federal level, but a combination of laws effectively render it <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">illegal to implant a genetically modified embryo</a>. Part of the reason is that scientists still aren't sure of the unintended consequences of new gene-editing technologies. </p><p>But there are also concerns that these technologies could usher in a new era of eugenics. After all, the function of a designer baby industry, like the one in the "Genetic Pressure" series, wouldn't necessarily be limited to eliminating genetic diseases; it could also work to increase the occurrence of "desirable" traits. </p><p>If the industry did that, it'd effectively signal that the <em>opposites of those traits are undesirable. </em>As the International Bioethics Committee <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">wrote</a>, this would "jeopardize the inherent and therefore equal dignity of all human beings and renew eugenics, disguised as the fulfillment of the wish for a better, improved life."</p><p><em>"Genetic Pressure Volume I: Baby Steps"</em><em> by Eugene Clark is <a href="http://bigth.ink/38VhJn3" target="_blank">available now.</a></em></p>Massive 'Darth Vader' isopod found lurking in the Indian Ocean
The father of all giant sea bugs was recently discovered off the coast of Java.
A close up of Bathynomus raksasa
- A new species of isopod with a resemblance to a certain Sith lord was just discovered.
- It is the first known giant isopod from the Indian Ocean.
- The finding extends the list of giant isopods even further.
The ocean depths are home to many creatures that some consider to be unnatural.
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzU2NzY4My9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTYxNTUwMzg0NX0.BTK3zVeXxoduyvXfsvp4QH40_9POsrgca_W5CQpjVtw/img.png?width=980" id="b6fb0" class="rm-shortcode" data-rm-shortcode-id="2739ec50d9f9a3bd0058f937b6d447ac" data-rm-shortcode-name="rebelmouse-image" data-width="1512" data-height="2224" />Bathynomus raksasa specimen (left) next to a closely related supergiant isopod, B. giganteus (right)
<p>According to<a href="https://www.livescience.com/supergiant-isopod-newfound-species.html" target="_blank" rel="dofollow"> LiveScience</a>, the Bathynomus genus is sometimes referred to as "Darth Vader of the Seas" because the crustaceans are shaped like the character's menacing helmet. Deemed Bathynomus raksasa ("raksasa" meaning "giant" in Indonesian), this cockroach-like creature can grow to over 30 cm (12 inches). It is one of several known species of giant ocean-going isopod. Like the other members of its order, it has compound eyes, seven body segments, two pairs of antennae, and four sets of <a href="https://www.livescience.com/supergiant-isopod-newfound-species.html" target="_blank" rel="noopener noreferrer dofollow">jaws</a>.</p><p>The incredible size of this species is likely a result of deep-sea gigantism. This is the tendency for creatures that inhabit deeper parts of the ocean to be much larger than closely related species that live in shallower waters. B. raksasa appears to make its home between 950 and 1,260 meters (3,117 and 4,134 ft) below sea <a href="https://news.nus.edu.sg/research/new-species-supergiant-isopod-uncovered" target="_blank" rel="noopener noreferrer dofollow">level</a>. </p><p>Perhaps fittingly for a creature so creepy looking, that is the lower sections of what is commonly called <a href="https://en.wikipedia.org/wiki/Mesopelagic_zone" target="_blank" rel="noopener noreferrer dofollow">The Twilight Zone</a><em>, </em>named for the lack of light available at such depths. </p><p>It isn't the only giant isopod, <a href="https://en.wikipedia.org/wiki/Giant_isopod" target="_blank">far from it</a>. Other species of ocean-going isopod can get up to 50 cm long (20 inches) and also look like they came out of a nightmare. These are the unusual ones, though. Most of the time, isopods stay at much more reasonable <a href="https://indianexpress.com/article/explained/explained-raksasa-cockroach-from-the-deep-the-stuff-nightmares-are-made-of-6513281/" target="_blank" rel="noopener noreferrer dofollow">sizes</a>. </p><p>The discovery of this new species was published in <a href="https://zookeys.pensoft.net/article/53906/" target="_blank" rel="noopener noreferrer dofollow">ZooKeys</a>. The remainder of the specimens from the trip are still being analyzed. The full report will be published <a href="https://www.futurity.org/deep-sea-giant-isopod-bathynomus-raksasa-2422042/" target="_blank" rel="noopener noreferrer dofollow">shortly</a>.<em> </em></p>What benefit does this find have for science? And is it as evil as it looks?
<div class="rm-shortcode" data-media_id="7XqcvwWp" data-player_id="FvQKszTI" data-rm-shortcode-id="8506fcd195866131efb93525ae42dec4"> <div id="botr_7XqcvwWp_FvQKszTI_div" class="jwplayer-media" data-jwplayer-video-src="https://content.jwplatform.com/players/7XqcvwWp-FvQKszTI.js"> <img src="https://cdn.jwplayer.com/thumbs/7XqcvwWp-1920.jpg" class="jwplayer-media-preview" /> </div> <script src="https://content.jwplatform.com/players/7XqcvwWp-FvQKszTI.js"></script> </div> <p>The discovery of a new species is always a cause for celebration in zoology. That this is the discovery of an animal that inhabits the deeps of the sea, one of the least explored areas humans can get to, is the icing on the cake.</p><p>Helen Wong of the National University of Singapore, who co-authored the species' description, explained the importance of the discovery:</p><p>"The identification of this new species is an indication of just how little we know about the oceans. There is certainly more for us to explore in terms of biodiversity in the deep sea of our region." </p><p>The animal's visual similarity to Darth Vader is a result of its compound eyes and the curious shape of its <a href="https://lkcnhm.nus.edu.sg/research/sjades2018/" target="_blank" rel="noopener noreferrer dofollow" style="">head</a>. However, given the location of its discovery, the bottom of the remote seas, it may be associated with all manner of horrifically evil Elder Things and <a href="https://en.wikipedia.org/wiki/Cthulhu" target="_blank" rel="dofollow">Great Old Ones</a>. <em></em></p>These are the world’s greatest threats in 2021
We look back at a year ravaged by a global pandemic, economic downturn, political turmoil and the ever-worsening climate crisis.
Billions are at risk of missing out on the digital leap forward, as growing disparities challenge the social fabric.
Image: Global Risks Report 2021
<h3>Widespread effects</h3><p>"The immediate human and economic costs of COVID-19 are severe," the report says. "They threaten to scale back years of progress on reducing global poverty and inequality and further damage social cohesion and global cooperation."</p><p>For those reasons, the pandemic demonstrates why infectious diseases hits the top of the impact list. Not only has COVID-19 led to widespread loss of life, it is holding back economic development in some of the poorest parts of the world, while amplifying wealth inequalities across the globe.</p><p>At the same time, there are concerns the fight against the pandemic is taking resources away from other critical health challenges - including a <a href="https://www.weforum.org/agenda/2020/09/charts-covid19-malnutrition-educaion-mental-health-children-world/" target="_blank" rel="noopener noreferrer">disruption to measles vaccination programmes</a>.</p>Columbia study finds new way to extract energy from black holes
A new study explains how a chaotic region just outside a black hole's event horizon might provide a virtually endless supply of energy.
- In 1969, the physicist Roger Penrose first proposed a way in which it might be possible to extract energy from a black hole.
- A new study builds upon similar ideas to describe how chaotic magnetic activity in the ergosphere of a black hole may produce vast amounts of energy, which could potentially be harvested.
- The findings suggest that, in the very distant future, it may be possible for a civilization to survive by harnessing the energy of a black hole rather than a star.
The ergosphere
<p>The ergosphere is a region just outside a black hole's event horizon, the boundary of a black hole beyond which nothing, not even light, can escape. But light and matter just outside the event horizon, in the ergosphere, would also be affected by the immense gravity of the black hole. Objects in this zone would spin in the same direction as the black hole at incredibly fast speeds, similar to objects floating around the center of a whirlpool.</p><p>The Penrose process states, in simple terms, that an object could enter the ergosphere and break into two pieces. One piece would head toward the event horizon, swallowed by the black hole. But if the other piece managed to escape the ergosphere, it could emerge with more energy than it entered with.</p><p>The movie "Interstellar" provides an example of the Penrose process. Facing a fuel shortage on a deep-space mission, the crew makes a last-ditch effort to return home by entering the ergosphere of a blackhole, ditching part of their spacecraft, and "slingshotting" away from the black hole with vast amounts of energy.</p><p>In a recent study published in the American Physical Society's <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.023014" target="_blank" style="">Physical Review D</a><em>, </em>physicists Luca Comisso and Felipe A. Asenjo used similar ideas to describe another way energy could be extracted from a black hole. The idea centers on the magnetic fields of black holes.</p><p style="margin-left: 20px;">"Black holes are commonly surrounded by a hot 'soup' of plasma particles that carry a magnetic field," Comisso, a research scientist at Columbia University and lead study author, told <a href="https://news.columbia.edu/energy-particles-magnetic-fields-black-holes" target="_blank" rel="noopener noreferrer">Columbia News</a>.</p>Ergosphere representation
<p>In the ergosphere of a rotating black hole, magnetic field lines are constantly breaking and reconnecting at fast speeds. The researchers theorized that when these lines reconnect, plasma particles shoot out in two different directions. One flow of particles shoots off against the direction of the spinning black hole, eventually getting "swallowed" by the black hole. But the other flow shoots in the same direction as the spin, potentially gaining enough velocity to escape the black hole's gravitational pull.</p><p>The researchers proposed that this occurs because the breaking and reconnecting of magnetic field lines can generate negative-energy particles. If the negative-energy particles get "swallowed" by the black hole, the positive particles would theoretically be exponentially accelerated.</p><p style="margin-left: 20px;">"Our theory shows that when magnetic field lines disconnect and reconnect, in just the right way, they can accelerate plasma particles to negative energies and large amounts of black hole energy can be extracted," Comisso said. "It is like a person could lose weight by eating candy with negative calories."</p>Black hole
Event Horizon Telescope Collaboration
<p>While there might not be immediate applications for the theory, it could help scientists better understand and observe black holes. On an abstract level, the findings may expand the limits of what scientists imagine is possible in deep space.</p><p style="margin-left: 20px;">"Thousands or millions of years from now, humanity might be able to survive around a black hole without harnessing energy from stars," Comisso said. "It is essentially a technological problem. If we look at the physics, there is nothing that prevents it."</p>A psychiatric diagnosis can be more than an unkind ‘label’
A popular and longstanding wave of thought in psychology and psychotherapy is that diagnosis is not relevant for practitioners in those fields.
