7 habits of the best self-directed learners

The best self-directed learners use these seven habits to improve their knowledge and skills in any subject.

A woman reads books in a library.
(Photo by Peter Cade/Getty Images)
  • Bill Gates, Mark Zuckerberg, and Ellen DeGeneres all dropped out of college, yet they became leaders in their fields. Their secret? Self-directed learning.
  • Self-directed learning can help people expand their knowledge, gain new skills, and improve upon their liberal education.
  • Following habits like Benjamin Franklin's five-hour rule, the 80/20 rule, and SMART goals can help self-directed learners succeed in their pursuits.

People are captivated by the stories of individuals who eschewed traditional education yet still became titans in their field. Bill Gates, Ellen DeGeneres, Anna Wintour, Henry Ford, John D. Rockefeller; none of them has a college degree, but they have all achieved fame and a level of success few can match. How did they do this? They are self-directed learners.

Nowadays, self-directed learning is less of a cultural curio and more of an economic necessity. New knowledge accumulates so quickly, and industries change so rapidly, traditional education paths can't keep pace. Unless your specialty is the pottery fashions of Ancient Greece, chances are your diploma is out of date before the ink dries. (Even then, you never know when some newly discovered Pompeii will upend terracotta paradigms.)

Need help getting into the practice? Here are seven habits shared by the best self-directed learners.

Take ownership of your learning

Malcolm Knowles was an educator and a champion for adult learning (a.k.a. andragogy). He described self-directed learning as a process "in which individuals take the initiative, with or without the help of others, in diagnosing their learning needs, formulating learning goals, identifying human and material resources for learning, choosing and implementing appropriate learning strategies, and evaluating learning outcomes."

The habits we'll discuss here address all these points, but the first step is always to take the initiative.

As Salman Khan, founder of Khan Academy, told Big Think, this isn't that much different from high school or college learning. "There is this illusion that is created in our classical education system that someone is teaching it to you," Khan said. "Really, they are creating a context in which you need to pull information and own it yourself."

The difference is that self-directed learners need to create that context for themselves. They do this by engaging in learning through a growth mindset. Traditional education can inadvertently saddle students with fixed mindsets (i.e., students are either naturally gifted at a subject or not, and their grades will reflect this). A growth-mindset student, on the other hand, knows that improvement is possible, even if it isn't easy.

Set SMART goals

Once you have theinitiative, you need to set goals. Otherwise, rewards will always remain nebulous and unobtainable, and rewards are necessary if you are to remain motivated.

The best self-directed learners know to set SMART goals. SMART is an acronym that stands for Specific, Measurable, Action-oriented, Realistic, and Time-defined. Any goals you set should meet these criteria.

Pay close attention to realistic time management. Self-directed learning is generally done in our few, precious off-hours. Teaching yourself programming is great. Trying to program an entire video game within a year is a bit much. Break it down into smaller chunks and give yourself time.

If you're curious, the opposite of a SMART goal is a VAPID one—that is, Vague, Amorphous, Pie-in-the-sky, Irrelevant, and Delayed. Don't be a VAPID learner.

Benjamin Franklin's five-hour rule

Benjamin Franklin was an author, statesman, inventor, and entrepreneur. He also left school when he was 10. How did he amass the knowledge necessary to succeed in so many trades with so little schooling? He set aside an hour every weekday for deliberate learning. He would read, write, ruminate, or devise experiments during that time.

Author Michael Simmons calls this Franklin's five-hour rule, and he notes that many of the best self-directed learners use some form of the method. Bill Gates reads roughly a book a week, while Arthur Blank reads two hours per day.

Be sure to spread your five hours throughout the week. Your brain wasn't designed for cram sessions, and trying to squeeze a week's learning into one day will ensure you forget a lot of the material. Additionally, our brains' neural networks need to time process information, so spacing out our learning helps us memorize difficult material more efficiently.A lithograph of Benjamin Franklin and his son William performing their famous kite-and-key experiment.

A lithograph of Benjamin Franklin and his son William performing their famous kite-and-key experiment.

(Photo by Hulton Archive/Getty Images)

Active learning

Salman Kahn created Kahn Academy to engage learners with exercises they could do themselves. Active learning, he says, helps students better understand the material and know when to apply which skills.

It is easy to engage actively with gardening or math problems, but what about subjects like history, where participation comes mainly through reading books? Bill Gates has a solution for that. He uses marginalia—note-taking in the margins of a book—to turn reading into a vibrant conversation with the author.

"When you're reading, you have to be careful that you really are concentrating," Gates told Quartz. "Particularly if it's a non-fiction book, are you taking the new knowledge and attaching it to knowledge you have. For me, taking notes helps make sure that I'm really thinking hard about what's in there."A photo of Bill Gates taken on April 19, 2018, in Berlin, Germany.

A photo of Bill Gates taken on April 19, 2018, in Berlin, Germany.

(Photo by Inga Kjer/Getty Images)

Prioritize (the 80/20 rule)

In the early 20th century, Italian economist Vilfredo Pareto noticed that 20% of Italy's population owned 80% of its land. His analysis was later expanded into the Pareto principle (a.k.a. the 80/20 rule). This rule broadly states that 80% of your results will stem from 20% of your actions.

The best self-directed learners use this rule to prioritize their study time. They focus on the 20% of actions that net them the most results. If someone wants to learn to crochet, they don't need to understand the history of primitive textiles to do that (as fascinating as that may be). They need to invest their learning time at hands-on applications and only use spare time to brush up on nålebinding (again, super fascinating).

Visit the library

This one may not apply to learners with the means of, say, Bill Gates, but for most of us, financial limits can interfere with our ability to accrue new supplies. Enter the library. A good research library has books on most any subject, has access to a host of online resources, and can connect you with like-minded professionals or groups.

Author Ray Bradbury couldn't afford to go to college and instead visited the local library three times a week. He went on to become one of the most celebrated authors of the 21st century.

"A college cannot educate you; a library can educate you," Bradbury said. "You go to the library to find yourself. You pull those books off the shelf, you open them, and you see yourself there. And you say, 'I'll be goddamed, there I am!'"People studying in the New York Public Library Rose reading room.

People studying in the New York Public Library's Rose Reading Room.

(Photo by Sascha Kilmer/Getty Images)

Employ your own motivation

The traditional education path gives you a very clear motivation: Get a good grade to get a good job. Self-directed learning provides no clear motivation, so you'll have to create your own.

Entrepreneur Mark Cuban urges people to never stop learning. The near 60-year-old billionaire is currently teaching himself to code in Python. His reason? He believes the world's first trillionaire will make their fortune with artificial intelligence, and he doesn't want to be left behind.

"Whatever you are studying right now, if you are not getting up to speed on deep learning, neural networks, etc., you lose," Cuban told CNBC. "The more I understand it, the more I get excited about it."

Of course, your motivation doesn't have to be finding the next million-dollar venture. It could be as simple as expanding your liberal education for self-improvement, learning a new skill set to advance in your field, or simply reading a book to share in conversation with others. Whatever the case, the motivation needs to come from you.

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

COVID and "gain of function" research: should we create monsters to prevent them?

Gain-of-function mutation research may help predict the next pandemic — or, critics argue, cause one.

Credit: Guillermo Legaria via Getty Images
Coronavirus

This article was originally published on our sister site, Freethink.

"I was intrigued," says Ron Fouchier, in his rich, Dutch-accented English, "in how little things could kill large animals and humans."

It's late evening in Rotterdam as darkness slowly drapes our Skype conversation.

This fascination led the silver-haired virologist to venture into controversial gain-of-function mutation research — work by scientists that adds abilities to pathogens, including experiments that focus on SARS and MERS, the coronavirus cousins of the COVID-19 agent.

If we are to avoid another influenza pandemic, we will need to understand the kinds of flu viruses that could cause it. Gain-of-function mutation research can help us with that, says Fouchier, by telling us what kind of mutations might allow a virus to jump across species or evolve into more virulent strains. It could help us prepare and, in doing so, save lives.

Many of his scientific peers, however, disagree; they say his experiments are not worth the risks they pose to society.

A virus and a firestorm

The Dutch virologist, based at Erasmus Medical Center in Rotterdam, caused a firestorm of controversy about a decade ago, when he and Yoshihiro Kawaoka at the University of Wisconsin-Madison announced that they had successfully mutated H5N1, a strain of bird flu, to pass through the air between ferrets, in two separate experiments. Ferrets are considered the best flu models because their respiratory systems react to the flu much like humans.

The mutations that gave the virus its ability to be airborne transmissible are gain-of-function (GOF) mutations. GOF research is when scientists purposefully cause mutations that give viruses new abilities in an attempt to better understand the pathogen. In Fouchier's experiments, they wanted to see if it could be made airborne transmissible so that they could catch potentially dangerous strains early and develop new treatments and vaccines ahead of time.

The problem is: their mutated H5N1 could also cause a pandemic if it ever left the lab. In Science magazine, Fouchier himself called it "probably one of the most dangerous viruses you can make."

Just three special traits

Recreated 1918 influenza virionsCredit: Cynthia Goldsmith / CDC / Dr. Terrence Tumpey / Public domain via Wikipedia

For H5N1, Fouchier identified five mutations that could cause three special traits needed to trigger an avian flu to become airborne in mammals. Those traits are (1) the ability to attach to cells of the throat and nose, (2) the ability to survive the colder temperatures found in those places, and (3) the ability to survive in adverse environments.

A minimum of three mutations may be all that's needed for a virus in the wild to make the leap through the air in mammals. If it does, it could spread. Fast.

Fouchier calculates the odds of this happening to be fairly low, for any given virus. Each mutation has the potential to cripple the virus on its own. They need to be perfectly aligned for the flu to jump. But these mutations can — and do — happen.

"In 2013, a new virus popped up in China," says Fouchier. "H7N9."

H7N9 is another kind of avian flu, like H5N1. The CDC considers it the most likely flu strain to cause a pandemic. In the human outbreaks that occurred between 2013 and 2015, it killed a staggering 39% of known cases; if H7N9 were to have all five of the gain-of-function mutations Fouchier had identified in his work with H5N1, it could make COVID-19 look like a kitten in comparison.

H7N9 had three of those mutations in 2013.

Gain-of-function mutation: creating our fears to (possibly) prevent them

Flu viruses are basically eight pieces of RNA wrapped up in a ball. To create the gain-of-function mutations, the research used a DNA template for each piece, called a plasmid. Making a single mutation in the plasmid is easy, Fouchier says, and it's commonly done in genetics labs.

If you insert all eight plasmids into a mammalian cell, they hijack the cell's machinery to create flu virus RNA.

"Now you can start to assemble a new virus particle in that cell," Fouchier says.

One infected cell is enough to grow many new virus particles — from one to a thousand to a million; viruses are replication machines. And because they mutate so readily during their replication, the new viruses have to be checked to make sure it only has the mutations the lab caused.

The virus then goes into the ferrets, passing through them to generate new viruses until, on the 10th generation, it infected ferrets through the air. By analyzing the virus's genes in each generation, they can figure out what exact five mutations lead to H5N1 bird flu being airborne between ferrets.

And, potentially, people.

"This work should never have been done"

The potential for the modified H5N1 strain to cause a human pandemic if it ever slipped out of containment has sparked sharp criticism and no shortage of controversy. Rutgers molecular biologist Richard Ebright summed up the far end of the opposition when he told Science that the research "should never have been done."

"When I first heard about the experiments that make highly pathogenic avian influenza transmissible," says Philip Dormitzer, vice president and chief scientific officer of viral vaccines at Pfizer, "I was interested in the science but concerned about the risks of both the viruses themselves and of the consequences of the reaction to the experiments."

In 2014, in response to researchers' fears and some lab incidents, the federal government imposed a moratorium on all GOF research, freezing the work.

Some scientists believe gain-of-function mutation experiments could be extremely valuable in understanding the potential risks we face from wild influenza strains, but only if they are done right. Dormitzer says that a careful and thoughtful examination of the issue could lead to processes that make gain-of-function mutation research with viruses safer.

But in the meantime, the moratorium stifled some research into influenzas — and coronaviruses.

The National Academy of Science whipped up some new guidelines, and in December of 2017, the call went out: GOF studies could apply to be funded again. A panel formed by Health and Human Services (HHS) would review applications and make the decision of which studies to fund.

As of right now, only Kawaoka and Fouchier's studies have been approved, getting the green light last winter. They are resuming where they left off.

Pandora's locks: how to contain gain-of-function flu

Here's the thing: the work is indeed potentially dangerous. But there are layers upon layers of safety measures at both Fouchier's and Kawaoka's labs.

"You really need to think about it like an onion," says Rebecca Moritz of the University of Wisconsin-Madison. Moritz is the select agent responsible for Kawaoka's lab. Her job is to ensure that all safety standards are met and that protocols are created and drilled; basically, she's there to prevent viruses from escaping. And this virus has some extra-special considerations.

The specific H5N1 strain Kawaoka's lab uses is on a list called the Federal Select Agent Program. Pathogens on this list need to meet special safety considerations. The GOF experiments have even more stringent guidelines because the research is deemed "dual-use research of concern."

There was debate over whether Fouchier and Kawaoka's work should even be published.

"Dual-use research of concern is legitimate research that could potentially be used for nefarious purposes," Moritz says. At one time, there was debate over whether Fouchier and Kawaoka's work should even be published.

While the insights they found would help scientists, they could also be used to create bioweapons. The papers had to pass through a review by the U.S. National Science Board for Biosecurity, but they were eventually published.

Intentional biowarfare and terrorism aside, the gain-of-function mutation flu must be contained even from accidents. At Wisconsin, that begins with the building itself. The labs are specially designed to be able to contain pathogens (BSL-3 agricultural, for you Inside Baseball types).

They are essentially an airtight cement bunker, negatively pressurized so that air will only flow into the lab in case of any breach — keeping the viruses pushed in. And all air in and out of the lap passes through multiple HEPA filters.

Inside the lab, researchers wear special protective equipment, including respirators. Anyone coming or going into the lab must go through an intricate dance involving stripping and putting on various articles of clothing and passing through showers and decontamination.

And the most dangerous parts of the experiment are performed inside primary containment. For example, a biocontainment cabinet, which acts like an extra high-security box, inside the already highly-secure lab (kind of like the radiation glove box Homer Simpson is working in during the opening credits).

"Many people behind the institution are working to make sure this research can be done safely and securely." — REBECCA MORITZ

The Federal Select Agent program can come and inspect you at any time with no warning, Moritz says. At the bare minimum, the whole thing gets shaken down every three years.

There are numerous potential dangers — a vial of virus gets dropped; a needle prick; a ferret bite — but Moritz is confident that the safety measures and guidelines will prevent any catastrophe.

"The institution and many people behind the institution are working to make sure this research can be done safely and securely," Moritz says.

No human harm has come of the work yet, but the potential for it is real.

"Nature will continue to do this"

They were dead on the beaches.

In the spring of 2014, another type of bird flu, H10N7, swept through the harbor seal population of northern Europe. Starting in Sweden, the virus moved south and west, across Denmark, Germany, and the Netherlands. It is estimated that 10% of the entire seal population was killed.

The virus's evolution could be tracked through time and space, Fouchier says, as it progressed down the coast. Natural selection pushed through gain-of-function mutations in the seals, similarly to how H5N1 evolved to better jump between ferrets in his lab — his lab which, at the time, was shuttered.

"We did our work in the lab," Fouchier says, with a high level of safety and security. "But the same thing was happening on the beach here in the Netherlands. And so you can tell me to stop doing this research, but nature will continue to do this day in, day out."

Critics argue that the knowledge gained from the experiments is either non-existent or not worth the risk; Fouchier argues that GOF experiments are the only way to learn crucial information on what makes a flu virus a pandemic candidate.

"If these three traits could be caused by hundreds of combinations of five mutations, then that increases the risk of these things happening in nature immensely," Fouchier says.

"With something as crucial as flu, we need to investigate everything that we can," Fouchier says, hoping to find "a new Achilles' heel of the flu that we can use to stop the impact of it."

The misguided history of female anatomy

From "mutilated males" to "wandering wombs," dodgy science affects how we view the female body still today.

Credit: Hà Nguyễn via Unsplash
Sex & Relationships
  • The history of medicine and biology often has been embarrassingly wrong when it comes to female anatomy and was surprisingly resistant to progress.
  • Aristotle and the ancient Greeks are much to blame for the mistaken notion of women as cold, passive, and little more than a "mutilated man."
  • Thanks to this dubious science, and the likes of Sigmund Freud, we live today with a legacy that judges women according to antiquated biology and psychology.
Keep reading Show less
Mind & Brain

Why do holidays feel like they're over before they even start?

People tend to reflexively assume that fun events – like vacations – will go by really quickly.

Quantcast