Scientists fix the gene that causes intellectual disability in men

Researchers use a cutting-edge technique to restore activity to the fragile X syndrome gene.


The fragile X syndrome is the most common form of intellectual impairment in men, affecting 1 out of 3,600 boys. Now, scientists at the Whitehead Institute used the CRISPR/Cas 9 gene editing method to restore activity to the fragile X syndrome gene in affected neurons. Their work, performed on human brain cells in a dish, paves the way for trying the technique on the brain, with the hope that it may treat a host of genetic conditions.

The syndrome can cause mild to severe intellectual disability, with symptoms like delays in talking, hyperactive behavior and anxiety. It may also result in physical features like large ears, a long face with prominent jaw and forehead, as well as flat feet. The disorder has also been linked to autism.

The Whitehead Institute for Biomedical Research, while independent of MIT, has 17 members from the MIT department of biology. The current research was led by the Institute’s founding member (and MIT professor) Rudolf Jaenisch. The team produced the first evidence that removing methylation, which are molecular tags that keep a mutant gene shut off, can reactivate the gene and restore the fragile X syndrome neurons.

A normal version of the FMR1 gene sequence, where the fragile X syndrome can develop, contains 5-55 nucleotide (CGG) repeats. Nucleotides are the basic structural units and building blocks for DNA. The scientists concluded that versions of the FMR1 sequence with over 200 nucleotide repeats can result in the syndrome’s production.

 

Demethylation at work. Credit: Cell.

The researchers hypothesized that methylation can blanket the nucleotide repeats and shut down the gene’s expression. To test this, postdoctoral researchers Shawn Liu and Hao Wu from Jaenisch’s lab developed a CRISPR/Cas9-based technique which can add or delete methylation tags from a specific stretch of the DNA. Removing the tags proved to renew the FMR1 gene expression, turning it back into a normal gene.

“These results are quite surprising—this work produced almost a full restoration of wild type expression levels of the FMR1 gene,” explained Jaenisch. “Often when scientists test therapeutic interventions, they only achieve partial restoration, so these results are substantial.”

Jaenisch’s team was able to reverse the abnormal electrical activity associated with the fragile X syndrome. Neurons rescued by this procedure were grafted into the brains of mice, with the FMR1 gene remaining active for at least three months. This promises that correcting methylation can lead to a sustained remedy for the disease.

“This work validates the approach of targeting the methylation on genes, and it will be a paradigm for scientists to follow this approach for other diseases,” said Jaenisch.

You can read the study here. 

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Sponsored
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

26 ultra-rich people own as much as the world's 3.8 billion poorest

The Oxfam report prompted Anand Giridharadas to tweet: "Don't be Pinkered into everything's-getting-better complacency."

Getty Images and Wikimedia Commons
Politics & Current Affairs
  • A new report by Oxfam argues that wealth inequality is causing poverty and misery around the world.
  • In the last year, the world's billionaires saw their wealth increase by 12%, while the poorest 3.8 billion people on the planet lost 11% of their wealth.
  • The report prompted Anand Giridharadas to tweet: "Don't be Pinkered into everything's-getting-better complacency." We explain what Steven Pinker's got to do with it.
Keep reading Show less

People who constantly complain are harmful to your health

Moans, groans, and gripes release stress hormones in the brain.

Photo credit: Getty Images / Stringer
popular

Could you give up complaining for a whole month? That's the crux of this interesting piece by Jessica Hullinger over at Fast Company. Hullinger explores the reasons why humans are so predisposed to griping and why, despite these predispositions, we should all try to complain less. As for no complaining for a month, that was the goal for people enrolled in the Complaint Restraint project.

Participants sought to go the entirety of February without so much as a moan, groan, or bellyache.

Keep reading Show less
Videos
  • Facebook and Google began as companies with supposedly noble purposes.
  • Creating a more connected world and indexing the world's information: what could be better than that?
  • But pressure to return value to shareholders came at the expense of their own users.
Keep reading Show less