David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Chris Hadfield
Retired Canadian Astronaut & Author
from the world's big
Start Learning

A new approach to Alzheimer’s based on physics and worms

How a study on worms pointed the way towards a treatment for dementia.


Photo by Institute for Stem Cell Research via Getty Images
  • An increasing amount of research suggests that failures in phase transition within cells can cause a variety of aliments.
  • The mechanism is believed to involve the inability of moleclues to move from solid to liquid and back, inhibiting cellular function.
  • The discoveries open the door to treatments for neurodegenerative disease, some cancers, and other illnesses.

The human brain is both the tool we use to understand the world and one of our existence's great enigmas. For large parts of human history, it wasn't even credited with thinking. Countless great minds have tried to figure out how it works from biological, physical, and philosophical perspectives. Despite their efforts, we're still trying to understand how it works, why it breaks, and how to fix it when it does.

A new study sheds light on how the internal dynamics of the cells that comprise our brains can make it go haywire, and offer a potential route to a solution.

All matter is just going through a phase. 

Think of liquid water for a moment. If you put it in the freezer, it'll turn to solid ice. Leave it out, and it will melt again. Boil it or leave it outside on a hot day, and it will all turn into water vapor eventually. This change in state is called a "phase transition" and is familiar to most people who took some physics or chemistry.

Phase transition sometimes takes place in cells. Molecules inside cells responsible for cellular metabolism can change from solid to liquid to carry out specific tasks. However, it occasionally happens that the process that allows this to happen breaks down, and the molecules remain a little more solid than is ideal. This means that the molecules are no longer able to move around the cell and do their jobs.

When this happens in certain cells in the brain, toxins associated with Alzheimer's disease and various other conditions start to build up in and around the cells. This discovery, based on previous studies from 2009, is the foundation of a theory on how neurodegenerative diseases start in our brains.

How did scientists develop this theory?

In 2009, a group of scientists discovered phase transitions and their importance in worms' reproductive cells. For reasons which are probably clear to you, this study didn't garner much attention right away. After a few years, the idea that glitchy phase transitions could cause a variety of issues gained some traction, and studies on phase transition in human brain cells took place. Dr. J Paul Taylor even won the Potamkin Prize, awarded for excellence in dementia research, for work concerning how faulty phase transition relates to neurodegenerative diseases.

What directions does this point in?

In his NPR interview, Dr. Taylor suggests that treatments for Alzheimer's and related diseases based on this new understanding could be available in a few years. In the same article, Dr. Clifford Brangwyane of Princeton explained that some experimental treatments have already shown promise in correcting the issues. He also suggests that phase transition treatments could be used against other illnesses and perhaps even some cancers.

Sometimes tremendous scientific advances are born out of the strangest studies. In this case, a potential treatment for a variety of terrible neurodegenerative diseases traces its roots to a study of worms. More bizarre things have happened in science.

LIVE EVENT | Radical innovation: Unlocking the future of human invention

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

NASA's idea for making food from thin air just became a reality — it could feed billions

Here's why you might eat greenhouse gases in the future.

Jordane Mathieu on Unsplash
Technology & Innovation
  • The company's protein powder, "Solein," is similar in form and taste to wheat flour.
  • Based on a concept developed by NASA, the product has wide potential as a carbon-neutral source of protein.
  • The man-made "meat" industry just got even more interesting.
Keep reading Show less

Navy SEALs: How to build a warrior mindset

SEAL training is the ultimate test of both mental and physical strength.

  • The fact that U.S. Navy SEALs endure very rigorous training before entering the field is common knowledge, but just what happens at those facilities is less often discussed. In this video, former SEALs Brent Gleeson, David Goggins, and Eric Greitens (as well as authors Jesse Itzler and Jamie Wheal) talk about how the 18-month program is designed to build elite, disciplined operatives with immense mental toughness and resilience.
  • Wheal dives into the cutting-edge technology and science that the navy uses to prepare these individuals. Itzler shares his experience meeting and briefly living with Goggins (who was also an Army Ranger) and the things he learned about pushing past perceived limits.
  • Goggins dives into why you should leave your comfort zone, introduces the 40 percent rule, and explains why the biggest battle we all face is the one in our own minds. "Usually whatever's in front of you isn't as big as you make it out to be," says the SEAL turned motivational speaker. "We start to make these very small things enormous because we allow our minds to take control and go away from us. We have to regain control of our mind."
Keep reading Show less

How COVID-19 will change the way we design our homes

Pandemic-inspired housing innovation will collide with techno-acceleration.

Maja Hitij/Getty Images
COVID-19 is confounding planning for basic human needs, including shelter.
Keep reading Show less
Scroll down to load more…