Scientists have created a carbon-trapping mineral in a lab

It’s still only in the lab at this stage, and then there’s the problem of where, exactly, to store the carbon-impregnated magnesite.

The precise formation of the mineral magnesite is MgCO3, which is one part magnesium, one part carbon, and three parts oxygen.

Put together, it forms a mineral that can actually trap carbon molecules—potentially, a humanity-saving discovery.

Natural magnesite crystal (4 microns wide). Credit: Ian Power

There are two major problems so far with it: 

1) It takes a metric ton of the stuff to remove a half-ton of carbon from the atmosphere. This will likely create a situation where the mineral works as intended, but storing those tons of magnesite will become a bigger problem. 

2) It takes hundreds of thousands of years for the mineral to form naturally, through a process known as hydrothermal metamorphism, where water at high temperatures, combined with pressure, changes magnesium-rich rocks such as peridotite into magnesite.

What these scientists have at least initially solved is the second problem. They have found a much faster way to create magnesite. To do so, they used polystyrene microspheres, which are used in many disciplines of science and are widely available, to cause magnesite crystallization within 72 days—exponentially faster, in other words. A bonus is that it happens at room temperature, which means it doesn’t take energy to create it. 

"Our work shows two things. Firstly, we have explained how and how fast magnesite forms naturally. This is a process which takes hundreds to thousands of years in nature at Earth's surface. The second thing we have done is to demonstrate a pathway which speeds this process up dramatically,” said Professor Ian Power of Trent University, Ontario, CA, study lead. 

Magnesite sediments in a playa (desert basin) in British Columbia, Canada. Credit: Ian Power

Since humans add 40 billion tons of extra carbon dioxide to the atmosphere every year, doing the quick math tells us: It will take 20 billion tons of magnesite, per year, to trap all of that. 

At least, it’s a start. 

More from Professor Power: ”For now, we recognize that this is an experimental process, and will need to be scaled up before we can be sure that magnesite can be used in carbon sequestration. This depends on several variables, including the price of carbon and the refinement of the sequestration technology, but we now know that the science makes it do-able.”

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Why the ocean you know and love won’t exist in 50 years

Can sensitive coral reefs survive another human generation?

  • Coral reefs may not be able to survive another human decade because of the environmental stress we have placed on them, says author David Wallace-Wells. He posits that without meaningful changes to policies, the trend of them dying out, even in light of recent advances, will continue.
  • The World Wildlife Fund says that 60 percent of all vertebrate mammals have died since just 1970. On top of this, recent studies suggest that insect populations may have fallen by as much as 75 percent over the last few decades.
  • If it were not for our oceans, the planet would probably be already several degrees warmer than it is today due to the emissions we've expelled into the atmosphere.
Keep reading Show less

Vikings unwittingly made their swords stronger by trying to imbue them with spirits

They didn't know it, but the rituals of Iron Age Scandinavians turned their iron into steel.

Culture & Religion
  • Iron Age Scandinavians only had access to poor quality iron, which put them at a tactical disadvantage against their neighbors.
  • To strengthen their swords, smiths used the bones of their dead ancestors and animals, hoping to transfer the spirit into their blades.
  • They couldn't have known that in so doing, they actually were forging a rudimentary form of steel.
Keep reading Show less

Health care: Information tech must catch up to medical marvels

Michael Dowling, Northwell Health's CEO, believes we're entering the age of smart medicine.

Photo: Tom Werner / Getty Images
Sponsored by Northwell Health
  • The United States health care system has much room for improvement, and big tech may be laying the foundation for those improvements.
  • Technological progress in medicine is coming from two fronts: medical technology and information technology.
  • As information technology develops, patients will become active participants in their health care, and value-based care may become a reality.
Keep reading Show less