Sign up for the Starts With a Bang newsletter
Travel the universe with Dr. Ethan Siegel as he answers the biggest questions of all
Notice: JavaScript is required for this content.
On September 26, 2022, NASA’s DART mission collides with asteroid Dimorphos (Watch it live here ).
This infographic shows the original orbit of asteroid Dimorphos around the larger asteroid Didymos, along with the trajectory of NASA’s DART spacecraft and the presumed new orbit that will result. The new orbit changed by a much greater amount than simulations and calculations predicted, indicating that a better understanding of these redirection efforts are required before we begin relying on them to save our planet.
(Credit : NASA/Johns Hopkins APL)
This ~170 meter (560 foot) asteroid provides the perfect testing grounds for asteroid redirection.
A variety of objects from Earth shown for comparison with NASA’s DART mission, the asteroid Dimorphos that it will strike, and the asteroid Didymos which Dimorphos orbits. Although there are some ~25 million asteroids of 100 meters in diameter or larger, none of the asteroid strikes recorded in human history have been larger than ~80 meters.
(Credit : NASA / Johns Hopkins APL)
Only ~100,000 civilization-killers potentially exist, but over 25 million Dimorphos-sized bodies threaten Earth.
Although we’ve cataloged most of the large (greater than 1 km) asteroids in the Solar System, the population of inner near-Earth asteroids that are greater than 0.1 km in size has not been well-determined at all. The number density of the smaller objects on this graph has only been estimated; a dedicated mission, such as NEO Surveyor, will be vital toward learning what truly poses a predictable hazard to Earth.
Credit : Marco Colombo, DensityDesign Research Lab
Many are already near-Earth asteroids , with most others one Jupiter-assist away from creating terrestrial impacts.
While the near-Earth asteroids are already posing potential hazards to Earth, most of the asteroids that are out there are heavily influenced by Jupiter. The wrong gravitational interaction, which can always occur as time goes on, could turn any of these asteroids into potential Earth-orbit-crossing hazards. Despite the dense appearance of this map, the asteroid belt itself is incredibly sparse.
Credit : Pablo Carlos Budassi/Wikimedia.org
These bodies move fast: at ~45,000 mph (72,000 kph) relative to us.
A comparison of the scale of various objects, including the size of three famous meteor strikes on Earth: the Chelyabinsk event that struck Russia in 2013, the Tunguska Event of 1908, and the event that created Meteor/Barringer crater tens of thousands of years ago. None of these objects were big enough to even be counted among the ~25 million asteroids that are out there at 100+ meters in diameter.
(Credit : cmglee, Wagner51, domdomegg/Wikimedia Commons)
With such masses and speeds, impacts equate to ~10+ Megaton explosions on Earth .
Barringer Crater, also known as Meteor Crater, is an impressive crater located in the Arizona desert, more than a mile in diameter. Although this crater was made tens of thousands of years ago, it was caused by a relatively small impactor estimated at a mere 50 meters across: less than a third the size of the asteroid that NASA’s DART mission will collide with. Although these “city-killer” sized objects are dangerous, one about three times the diameter would be large enough to cause regional devastation for tens to up to a hundred miles in all directions, similar to the Tunguska event.
(Credit : Grahampurse/Wikimedia Commons)
Asteroid redirection efforts could avert such events but face many challenges.
This diagram maps the data gathered from 1994-2013 on small asteroids impacting Earth’s atmosphere to create very bright meteors, technically called “bolides” and commonly referred to as “fireballs”. Sizes of red dots (daytime impacts) and blue dots (nighttime impacts) are proportional to the optical radiated energy of impacts measured in billions of Joules (GJ) of energy. The largest impactor over this time period, the Chelyabinsk meteorite, was only ~20 meters in diameter, and most meteors burn up completely before reaching the ground. Particularly for small bolides occurring over ocean waters, tracing out their exact trajectories is an extremely difficult exercise.
Credit : Planetary Science, NASA/JPL-Caltech
1.) Early identification .
At present, nearly 30,000 potentially hazardous asteroids have been identified, with about a third of them above ~140 meters in diameter. The overwhelming majority of asteroids, including near-Earth asteroids, have yet to be found and characterized.
(Credit : Alan B. Chamberlin, NASA/JPL-Caltech)
Identifying and characterizing potentially hazardous objects early is key.
The NEO Surveyor mission, whose goal is to discover and categorize most of the potentially hazardous near-Earth objects, is a planetary defense mission that should find practically all of the Earth-crossing asteroids greater than 140 meters across, as well as many smaller ones. It’s a high priority mission, but one that needs to be fully funded to do its job.
(Credit : NASA/JPL-Caltech)
New low-Earth orbiting satellites severely hinder this already herculean task.
The Vera Rubin observatory, home to the Large Synoptic Survey Telescope, will soon become active, and will be humanity’s best tool for identifying and tracking the orbits of potentially hazardous objects. Although one of its main science goals is to track and identify potentially hazardous asteroids, this endeavor is severely curtailed by the recent deluge of new low-Earth orbit satellites. More than 50% of all low-Earth orbiting satellites have been launched since 2019.
(Credit : Todd Mason, Mason Productions Inc./LSST Corporation)
2.) Asteroid interception .
This image shows the parabola-like trajectory trail left by a rocket after launch. Many objects have left bizarre and unusual trails as they’ve zipped through our atmosphere, but none, at least so far, have indicated anything that goes beyond either conventional human technology or naturally occurring objects.
Credit : SpaceX/rawpixel
Intervening quickly is key.
Comet 67P/Churyumov-Gerasimenko was imaged many times by the ESA’s Rosetta mission, where its irregular shape, volatile and outgassing surface, and cometary activity were all observed. The comet’s nucleus itself would have to have been much larger and more massive to be pulled into a “round” shape by self-gravitation.
Credit : ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Small changes in trajectory, early on, are equally effective to large alterations later.
Flyby spacecraft Deep Impact shows the flash that occurred when comet Tempel 1 ran over the spacecraft’s impactor probe. It was taken by the flyby craft’s High Resolution Instrument, Visual CCD camera (HRIV) over a period of about 40 seconds. Black borders are the result of image stabilization. The small change in momentum resulting from this impact did not appreciably alter the motion of Tempel 1.
(Credit : Paul Stephen Carlin, NASA/JPL)
3.) Momentum transfer .
The debris stream of asteroid 3200 Phaethon creates the Geminids. Asteroids and
Credit : Peter Jenniskens and Ian Webster
This is the hardest problem of all, as each solution possesses drawbacks.
Schematic of the DART mission shows the impact on the moonlet of asteroid (65803) Didymos: Dimorphos. Post-impact observations from Earth-based optical telescopes and planetary radar would, in turn, measure the change in the moonlet’s orbit about the parent body, determining the effectiveness of a small impactor in changing the motion of the asteroid as desired.
(Credit : NASA/Johns Hopkins Applied Physics Lab)
DART-like impacts can create ejecta, failing to redirect the main body.
The asteroid Bennu, shown here, has a surface typical of most asteroids under ~1 km in diameter: it appears to be a volatile-rich pile of rubble. A detonation/explosion, either on the surface or from deep within, might simply kick up debris and create multiple fragments that will then collide with Earth, leading to a comparable amount of destruction to no intervention at all.
(Credit : NASA’s Goddard Space Flight Center / Conceptual Image Lab / Scientific Visualization Studio)
Detonations could create multiple impactors, compounding the problem.
Detonating a nuclear device close to or right against an incoming asteroid might not simply impart momentum to it, changing its trajectory, but could blast it apart into pieces and could irradiate it, creating a problem of multiple fragments with large amounts of nuclear waste landing on Earth, bringing destruction and pollution back simultaneously.
(Credit: NASA/JPL-Caltech)
Nuclear strikes could do both, while creating Earth-bound radioactive fallout.
The NEXIS Ion Thruster, at Jet Propulsion Laboratories, is a prototype for a long-term thruster that could move large-mass objects over very long timescales. If we had sufficient lead time, a thruster (or series of thrusters) like this could save the Earth from a potentially hazardous impact.
(Credit : NASA/JPL)
Long-term engine thrust is the safest strategy, but requires the most lead time.
The animation depicts a mapping of the positions of known near-Earth objects (NEOs) at points in time over the past 20 years and finishes with a map of all known asteroids as of January 2018. Despite how crowded a diagram such as this appears, the space between asteroids, on average, is enormous when compared to their actual sizes. The impact rate on Earth is dramatically increased, not decreased, by the presence of Jupiter.
Credit : NASA/JPL-Caltech
Without a demonstrated technological solution , we can only hope our luck continues .
Comet Bernardinelli-Bernstein, the largest comet ever discovered, has a nucleus that’s approximately 119 kilometers across. If such an object were to strike Earth, the energy imparted to our planet would be thousands to ten thousand times as energetic as the K-Pg impactor that occurred 65 million years ago. Comet Swift-Tuttle, although “only” 26 kilometers across, is presently the most dangerous known object to humanity.
Credit : NASA/Don Davis
Mostly Mute Monday tells an astronomical story in images, visuals, and no more than 200 words. Talk less; smile more.
Sign up for the Starts With a Bang newsletter
Travel the universe with Dr. Ethan Siegel as he answers the biggest questions of all
Notice: JavaScript is required for this content.