The Neurochemistry of Flow States, with Steven Kotler

Steven Kotler explains the neurochemical changes during flow states that strengthen motivation, creativity and learning.

Steven Kotler: Besides neuroanatomical changes in flow there are neurochemical changes, right. The brain produces a giant cascade of neurochemistry. You get norepinephrine, dopamine, anandamide, serotonin and endorphins. All five of these are performance enhancing neurochemicals, right. So they make you faster, stronger, quicker and they do the same thing with your brain.  In the front end of a flow state you take in more information, you process it more deeply meaning you process it using more parts of your brain and you process it more quickly. There’s some debate about this but it does appear that you process it more quickly. This is norepinephrine and dopamine. So when people enter a flow state they talk about feeling like they’re senses are incredibly heightened. This is the performance enhancing aspect of norepinephrine and dopamine.

Where these chemicals really come in handy is how they affect motivation, creativity and learning. We’ll start with motivation. Besides being performance enhancing chemicals these are obviously all feel good drugs, right. These five chemicals are the most potent feel good drugs the brain can produce. As a result flow is considered the most addictive state on earth. Scientists don’t like the word addictive so instead they use autotelic. When something is autotelic it is an end in itself. What it means is that once an experience starts producing flow we will go extraordinarily far out of our way to get more of it which is why researchers now believe flow is the source code of intrinsic motivation. Another thing that those neurochemicals do is they augment the creative process. So creativity is always recombinantory. It’s the product of novel information, bumping into old thoughts to create something startlingly new. So if you want to amplify creativity, you want to amplify every aspect of that process. Again, the neurochemicals help. So on the front end of the flow state when you get norepinephrine and dopamine they’re tightening focus so you are taking in more information per second. So you are boosting that part of the creative process. Norepinephrine and dopamine do something else in the brain which is they lower signal to noise ratio so you detect more patterns. They jack up pattern recognition so our ability to link ideas together is also an enhancer. Taking in more information we can link it together.

Anandamide which is another chemical that shows up in flow doesn’t just promote pattern recognition. It promotes lateral thinking. So pattern recognition is more or less the linking of familiar ideas together. Lateral thinking is the linking of very disparate ideas together, right. So more information per second, all kinds of pattern recognition, lateral thinking. All of it surrounds the creative process and amplifies all of it which is why, for example, studies run by my organization, the Flow Genome Project, we found creativity is increased 500 to 700 percent. To give you another example in a recent Australian study they took 42 people, gave them a very tricky brainteaser to solve, the kind that needs very creative problem solving.  Nobody could solve the problem. They induced flow artificially using transcranial magnetic stimulation to basically knock out the prefrontal cortex. They induced artificial transient hypofrontality technically.

As a result, 23 people solved the problem in record time. So massively amplified motivation, massively amplified creativity. The last thing flow does that’s really important is it jacks up learning. So a quick shorthand for how learning works is the more neurochemicals that show up during experience, the better chance that experience has of moving from short term holding into long term storage, right. Neurochemicals among their many other functions, one of them is to tag experiences. Big neon sign saying really important, save for later because flow is this giant neurochemical dump. It massively amplifies learning. So in studies run by DARPA and researchers at Advanced Brain Monitoring in California, when they introduced flow artificially this time kind of using neurofeedback in soldiers, marksmen to be exact, they found that soldiers in flow learn to shoot 230 percent faster than normal. When they redid this study using novice marksmen, they did it with riflemen and archers, what they discovered is that the period of time it takes to train a novice archer or novice marksman up to the expert level when they’re in flow can be cut in half. So Malcolm Gladwell’s famous 10,000 hours to mastery, what the research shows is that flow cuts it in half.

Directed/Produced by Jonathan Fowler, Elizabeth Rodd, and Dillon Fitton


This is the second video in a five-part series with Steven Kotler on the "optimized brain" available in playlist form <a href="http://bigthink.com/playlists/the-optimized-brain-a-workshop-on-flow-states-with-steven-kotler">here</a>. 

 

 

Steven Kotler explains the neurochemical changes during flow states that strengthen motivation, creativity and learning. "The brain produces a giant cascade of neurochemistry. You get norepinephrine, dopamine, anandamide, serotonin and endorphins. All five of these are performance enhancing neurochemicals." Kotler discusses how each amplifies intellectual and cognitive performance.


This is the second video in a five-part series with Steven Kotler on the "optimized brain" available in playlist form here.

Deep learning nails correlation. Causation is another matter.

Why do people with bigger hands have a better vocabulary? That's one question deep learning can't answer.

Videos
  • Did you know that people with bigger hands have larger vocabularies?
  • While that's actually true, it's not a causal relationship. This pattern exists because adults tend know more words than kids. It's a correlation, explains NYU professor Gary Marcus.
  • Deep learning struggles with how to perceive causal relationships. If given the data on hand size and vocabulary size, a deep learning system might only be able to see the correlation, but wouldn't be able to answer the 'why?' of it.
Keep reading Show less

Is NASA ignoring proof of Martian life from the 1970s?

One of the scientists with the Viking missions says yes.

Image source: David Williams/NASA
Surprising Science
  • A former NASA consultant believe his experiments on the Viking 1 and 2 landers proved the existence of living microorganisms on Mars
  • Because of other conflicting data, his experiments' results have been largely discarded.
  • Though other subsequent evidence supports their findings, he says NASA has been frustratingly disinterested in following up.

Gilbert V. Levin is clearly aggravated with NASA, frustrated by the agency's apparent unwillingness to acknowledge what he considers a fact: That NASA has had dispositive proof of living microorganisms on Mars since 1976, and a great deal of additional evidence since then. Levin is no conspiracy theorist, either. He's an engineer, a respected inventor, founder of scientific-research company Spherix, and a participant in that 1976 NASA mission. He's written an opinion piece in Scientific American that asks why NASA won't follow up on what he believes they should already know.

In 1976

Image source: NASA/JPL

Sunset at the Viking 1 site

As the developer of methods for rapidly detecting and identifying microorganisms, Levin took part in the Labeled Release (LR) experiment landed on Mars by NASA's Viking 1 and 2.

At both landing sites, the Vikings picked up samples of Mars soil, treating each with a drop of a dilute nutrient solution. This solution was tagged with radioactive carbon-14, and so if there were any microorganisms in the samples, they would metabolize it. This would lead to the production of radioactive carbon or radioactive methane. Sensors were positioned above the soil samples to detect the presence of either as signifiers of life.

At both landing sites, four positive indications of life were recorded, backed up by five controls. As a guarantee, the samples were then heated to 160°, hot enough to kill any living organisms in the soil, and then tested again. No further indicators of life were detected.

According to many, including Levin, had this test been performed on Earth, there would have been no doubt that life had been found. In fact, parallel control tests were performed on Earth on two samples known to be lifeless, one from the Moon and one from Iceland's volcanic Surtsey island, and no life was indicated.

However, on Mars, another experiment, a search for organic molecules, had been performed prior to the LR test and found nothing, leaving NASA in doubt regarding the results of the LR experiment, and concluding, according to Levin, that they'd found something imitating life, but not life itself. From there, notes Levin, "Inexplicably, over the 43 years since Viking, none of NASA's subsequent Mars landers has carried a life detection instrument to follow up on these exciting results."

Subsequent evidence

Image source: NASA

A thin coating of water ice on the rocks and soil photographed by Viking 2

Levin presents in his opinion piece 17 discoveries by subsequent Mars landers that support the results of the LR experiment. Among these:

  • Surface water sufficient to sustain microorganisms has been found on the red planet by Viking, Pathfinder, Phoenix and Curiosity.
  • The excess of carbon-13 over carbon-12 in the Martian atmosphere indicates biological activity since organisms prefer ingesting carbon-12.
  • Mars' CO2should long ago have been converted to CO by the sun's UV light, but CO2 is being regenerated, possibly by microorganisms as happens on Earth.
  • Ghost-like moving lights, resembling Earth's will-O'-the-wisps produced by spontaneous ignition of methane, have been seen and recorded on the Martian surface.
  • "No factor inimical to life has been found on Mars." This is a direct rebuttal of NASA's claim cited above.

Frustration

Image source: NASA

A technician checks the soil sampler of a Viking lander.

By 1997, Levin was convinced that NASA was wrong and set out to publish followup research supporting his conclusion. It took nearly 20 years to find a venue, he believes due to his controversial certainty that the LR experiment did indeed find life on Mars.

Levin tells phys.org, "Since I first concluded that the LR had detected life (in 1997), major juried journals had refused our publications. I and my co-Experimenter, Dr. Patricia Ann Straat, then published mainly in the astrobiology section of the SPIE Proceedings, after presenting the papers at the annual SPIE conventions. Though these were invited papers, they were largely ignored by the bulk of astrobiologists in their publications." (Staat is the author of To Mars with Love, about her experience as co-experimenter with Levin for the LR experiments.)

Finally, he and Straat decided to craft a paper that answers every objection anyone ever had to their earlier versions, finally publishing it in Astrobiology's October 2016 issue. "You may not agree with the conclusion," he says, "but you cannot disparage the steps leading there. You can say only that the steps are insufficient. But, to us, that seems a tenuous defense, since no one would refute these results had they been obtained on Earth."

Nonetheless, NASA's seeming reluctance to address the LR experiment's finding remains an issue for Levin. He and Straat have petitioned NASA to send a new LR test to the red planets, but, alas, Levin reports that "NASA has already announced that its 2020 Mars lander will not contain a life-detection test."

Physicists solve a 140-year-old mystery

Scientists discover the inner workings of an effect that will lead to a new generation of devices.

Credit: IBM
Surprising Science
  • Researchers discover a method of extracting previously unavailable information from superconductors.
  • The study builds on a 19th-century discovery by physicist Edward Hall.
  • The research promises to lead to a new generation of semiconductor materials and devices.
Keep reading Show less