Multiple Universes Can't Explain Reality — The Idea That Can Is Even Stranger

The positing of universes parallel to ours, to explain the behavior of quantum mechanics, may seem like the weirdest idea ever. But it might be just the second-weirdest idea ever.

George Musser: So one explanation that people have put forward over the years for these spooky connections and for quantum mechanics, actually, in general is that it’s an indication we live in a multiverse. In other words, that there are other domains of reality out there that we have only a very dim glimpse of. Quantum mechanics says that when I measure a particle, I get a random result and doesn’t have any explanation for that random result. So let’s say we think of that metaphorically in terms of those coins. So if I flip a quantum coin, it comes up heads or tails. And I see heads. But the strange thing is the mathematics says I should see heads and tails. So it’s always been a mystery of why I see one or the other. The proposition is that actually the coin does come up heads and tails, but it comes up heads in our universe and tails in another universe. So the idea of different universes, of parallel universes, is a way to make sense of kind of the multiplicity, the outcomes that are observed in quantum mechanics. And people propose this would be a way to kind of get rid of the non-locality, that the non-locality, the spooky action at a distance, is actually our kind of imperfect glimpse of a multiverse of parallel universes. And that individually those universes all behave completely locally, no spooky action. 

And I kind of actually have a lot of sympathy for that position. It’s actually kind of awesome to think that there might be parallel universes not just out there, but actually in here that we could be kind of just cheek by jowl with parallel universes all the time and we never even sensed them. That even any measurement we make would cause the universe to branch — parallel universes to just be conjured up all the time. It’s kind of an amazing conception of nature. But I’ve kind of gone off the idea as much as I kind of, I’m drawn to it initially. And the reason is that I think that when you see these spooky actions and non-locality in a broader context, for instance in the context of other places where they occur in nature — not just for the particles, but they also seem to occur for black holes. They seem to happen in cosmology. They seem to happen in the workings of gravity. There’s a variety of contexts in which you see spooky actions. And those other contexts are harder to explain in this kind of parallel-universe scenario. But what they really seem to point to is that space and time are derivative. 

The real message of the spooky action is that space and time are not fundamental. The particles are rooted in that deeper layer where space and time don’t yet exist. And that’s the way to explain them. So the building blocks of the world may not be tiny things. What could these building blocks be if they’re not tiny because that’s kind of what we think of as a building block; a Lego is smaller than the thing you build out of the Legos. They may be what seems to us enormous things. Things that span the entire universe and are somehow acting in concert with one another to product these phenomena of space.

 

One of the prevailing mysteries of quantum mechanics, the vanguard of the physical sciences, is the phenomenon of "non-locality," i.e., the apparent causal interaction of tiny particles across vast distances of space. The event violates our understanding of causality grounded in Newtonian physics as well as Einstein's conception of a space-time continuum undergirding all of reality. One proposition that gets us out of this conundrum is multiple universes. This solution, however, doesn't explain a number of other observations we've made of the universe, including black holes. Perhaps our understanding of space and time needs reconsidering, but where does our knowledge of the universe stand after that?

Study helps explain why motivation to learn declines with age

Research suggests that aging affects a brain circuit critical for learning and decision-making.

Photo by Reinhart Julian on Unsplash
Mind & Brain

As people age, they often lose their motivation to learn new things or engage in everyday activities. In a study of mice, MIT neuroscientists have now identified a brain circuit that is critical for maintaining this kind of motivation.

Keep reading Show less

New brain scan analysis tool can detect early signs of dementia

Researchers develop the first objective tool for assessing the onset of cognitive decline through the measurement of white spots in the brain.

Credit: Gorodenkoff/Shutterstock
Mind & Brain
  • MRI brain scans may show white spots that scientists believe are linked to cognitive decline.
  • Experts have had no objective means of counting and measuring these lesions.
  • A new tool counts white spots and also cleverly measures their volumes.
Keep reading Show less

This is what aliens would 'hear' if they flew by Earth

A Mercury-bound spacecraft's noisy flyby of our home planet.

Image source: sdecoret on Shutterstock/ESA/Big Think
Surprising Science
  • There is no sound in space, but if there was, this is what it might sound like passing by Earth.
  • A spacecraft bound for Mercury recorded data while swinging around our planet, and that data was converted into sound.
  • Yes, in space no one can hear you scream, but this is still some chill stuff.

First off, let's be clear what we mean by "hear" here. (Here, here!)

Sound, as we know it, requires air. What our ears capture is actually oscillating waves of fluctuating air pressure. Cilia, fibers in our ears, respond to these fluctuations by firing off corresponding clusters of tones at different pitches to our brains. This is what we perceive as sound.

All of which is to say, sound requires air, and space is notoriously void of that. So, in terms of human-perceivable sound, it's silent out there. Nonetheless, there can be cyclical events in space — such as oscillating values in streams of captured data — that can be mapped to pitches, and thus made audible.

BepiColombo

Image source: European Space Agency

The European Space Agency's BepiColombo spacecraft took off from Kourou, French Guyana on October 20, 2019, on its way to Mercury. To reduce its speed for the proper trajectory to Mercury, BepiColombo executed a "gravity-assist flyby," slinging itself around the Earth before leaving home. Over the course of its 34-minute flyby, its two data recorders captured five data sets that Italy's National Institute for Astrophysics (INAF) enhanced and converted into sound waves.

Into and out of Earth's shadow

In April, BepiColombo began its closest approach to Earth, ranging from 256,393 kilometers (159,315 miles) to 129,488 kilometers (80,460 miles) away. The audio above starts as BepiColombo begins to sneak into the Earth's shadow facing away from the sun.

The data was captured by BepiColombo's Italian Spring Accelerometer (ISA) instrument. Says Carmelo Magnafico of the ISA team, "When the spacecraft enters the shadow and the force of the Sun disappears, we can hear a slight vibration. The solar panels, previously flexed by the Sun, then find a new balance. Upon exiting the shadow, we can hear the effect again."

In addition to making for some cool sounds, the phenomenon allowed the ISA team to confirm just how sensitive their instrument is. "This is an extraordinary situation," says Carmelo. "Since we started the cruise, we have only been in direct sunshine, so we did not have the possibility to check effectively whether our instrument is measuring the variations of the force of the sunlight."

When the craft arrives at Mercury, the ISA will be tasked with studying the planets gravity.

Magentosphere melody

The second clip is derived from data captured by BepiColombo's MPO-MAG magnetometer, AKA MERMAG, as the craft traveled through Earth's magnetosphere, the area surrounding the planet that's determined by the its magnetic field.

BepiColombo eventually entered the hellish mangentosheath, the region battered by cosmic plasma from the sun before the craft passed into the relatively peaceful magentopause that marks the transition between the magnetosphere and Earth's own magnetic field.

MERMAG will map Mercury's magnetosphere, as well as the magnetic state of the planet's interior. As a secondary objective, it will assess the interaction of the solar wind, Mercury's magnetic field, and the planet, analyzing the dynamics of the magnetosphere and its interaction with Mercury.

Recording session over, BepiColombo is now slipping through space silently with its arrival at Mercury planned for 2025.

End gerrymandering? Here’s a radical solution

Why not just divide the United States in slices of equal population?

Image: u/curiouskip, reproduced with kind permission.
Strange Maps
  • Slicing up the country in 10 strips of equal population produces two bizarre maps.
  • Seattle is the biggest city in the emptiest longitudinal band, San Antonio rules the largest north-south slice.
  • Curiously, six cities are the 'capitals' of both their horizontal and vertical deciles.
Keep reading Show less
Quantcast