Humans could merge with AI through this specialized polymer

Scientists are seeking ways to safely connect computers to the brain.

brain network illustration
Pixabay
  • Companies are developing brain-machine interfaces that aim to connect humans to computers.
  • One major challenge is finding materials that can accomplish this without damaging human tissue.
  • At a recent event, a team of researchers presented a specialized version of a polymer that could someday make brain-machine interfaces safer and more effective.

Elon Musk's Neuralink has a straightforward outlook on artificial intelligence: "If you can't beat em, join em." The company means that quite literally — it's building a device that aims to connect our brains with electronics, which would enable us, in theory, to control computers with our thoughts.

But how? What material would companies like Neuralink use to connect electronics with human tissue?

One potential solution was recently revealed at the American Chemical Society's Fall 2020 Virtual Meeting & Expo. A team of researchers from the University of Delaware presented a new biocompatible polymer coating that could help devices better fuse with the brain.

One major problem with implanting any kind of device into the body is scarring. Materials like gold, silicon, and steel tend to damage tissue when implanted. That's why David Martin, an associate dean at the University of Delaware's College of Engineering, and his colleagues have spent years studying a polymer called poly(3,4-ethylenedioxythiophene), or PEDOT.

Brain-machine interface

Neuralink prototype device

Neuralink

"We started looking at organic electronic materials like conjugated polymers that were being used in non-biological devices," Martin said in a press release. "We found a chemically stable example that was sold commercially as an antistatic coating for electronic displays."

PEDOT has already helped to improve the performance of medical implants, by lowering impedance without causing excessive scarring. Martin and his colleagues have been working on specializing PEDOT to allow for unique functions. Recently, the team added an antibody to the polymer that can detect when blood vessel growth hormones are attacked by a tumor — a technology that could serve as a breakthrough diagnostic tool in the future.

"Name your favorite biomolecule, and you can in principle make a PEDOT film that has whatever biofunctional group you might be interested in," Martin told Inverse.

By tweaking polymer coatings in similar ways, scientists like Martin could help to advance the field of brain-machine interfaces. The team hopes to next research how these specialized polymers behave in living organisms.

"Recently there have been a number of big players like Glaxo Smith Kline and Elon Musk's Neuralink get into the game; the technology is now rapidly evolving and it is clear there are going to be some remarkable future developments," Martin said. "The ability to do the polymerization in a controlled way inside a living organism would be fascinating."

As for Neuralink, Musk said the company would issue an update this month. Company spokespeople have said the technology's first applications will be for medical purposes.


This is what aliens would 'hear' if they flew by Earth

A Mercury-bound spacecraft's noisy flyby of our home planet.

Image source: sdecoret on Shutterstock/ESA/Big Think
Surprising Science
  • There is no sound in space, but if there was, this is what it might sound like passing by Earth.
  • A spacecraft bound for Mercury recorded data while swinging around our planet, and that data was converted into sound.
  • Yes, in space no one can hear you scream, but this is still some chill stuff.

First off, let's be clear what we mean by "hear" here. (Here, here!)

Sound, as we know it, requires air. What our ears capture is actually oscillating waves of fluctuating air pressure. Cilia, fibers in our ears, respond to these fluctuations by firing off corresponding clusters of tones at different pitches to our brains. This is what we perceive as sound.

All of which is to say, sound requires air, and space is notoriously void of that. So, in terms of human-perceivable sound, it's silent out there. Nonetheless, there can be cyclical events in space — such as oscillating values in streams of captured data — that can be mapped to pitches, and thus made audible.

BepiColombo

Image source: European Space Agency

The European Space Agency's BepiColombo spacecraft took off from Kourou, French Guyana on October 20, 2019, on its way to Mercury. To reduce its speed for the proper trajectory to Mercury, BepiColombo executed a "gravity-assist flyby," slinging itself around the Earth before leaving home. Over the course of its 34-minute flyby, its two data recorders captured five data sets that Italy's National Institute for Astrophysics (INAF) enhanced and converted into sound waves.

Into and out of Earth's shadow

In April, BepiColombo began its closest approach to Earth, ranging from 256,393 kilometers (159,315 miles) to 129,488 kilometers (80,460 miles) away. The audio above starts as BepiColombo begins to sneak into the Earth's shadow facing away from the sun.

The data was captured by BepiColombo's Italian Spring Accelerometer (ISA) instrument. Says Carmelo Magnafico of the ISA team, "When the spacecraft enters the shadow and the force of the Sun disappears, we can hear a slight vibration. The solar panels, previously flexed by the Sun, then find a new balance. Upon exiting the shadow, we can hear the effect again."

In addition to making for some cool sounds, the phenomenon allowed the ISA team to confirm just how sensitive their instrument is. "This is an extraordinary situation," says Carmelo. "Since we started the cruise, we have only been in direct sunshine, so we did not have the possibility to check effectively whether our instrument is measuring the variations of the force of the sunlight."

When the craft arrives at Mercury, the ISA will be tasked with studying the planets gravity.

Magentosphere melody

The second clip is derived from data captured by BepiColombo's MPO-MAG magnetometer, AKA MERMAG, as the craft traveled through Earth's magnetosphere, the area surrounding the planet that's determined by the its magnetic field.

BepiColombo eventually entered the hellish mangentosheath, the region battered by cosmic plasma from the sun before the craft passed into the relatively peaceful magentopause that marks the transition between the magnetosphere and Earth's own magnetic field.

MERMAG will map Mercury's magnetosphere, as well as the magnetic state of the planet's interior. As a secondary objective, it will assess the interaction of the solar wind, Mercury's magnetic field, and the planet, analyzing the dynamics of the magnetosphere and its interaction with Mercury.

Recording session over, BepiColombo is now slipping through space silently with its arrival at Mercury planned for 2025.

Learn the Netflix model of high-performing teams

Erin Meyer explains the keeper test and how it can make or break a team.

Videos
  • There are numerous strategies for building and maintaining a high-performing team, but unfortunately they are not plug-and-play. What works for some companies will not necessarily work for others. Erin Meyer, co-author of No Rules Rules: Netflix and the Culture of Reinvention, shares one alternative employed by one of the largest tech and media services companies in the world.
  • Instead of the 'Rank and Yank' method once used by GE, Meyer explains how Netflix managers use the 'keeper test' to determine if employees are crucial pieces of the larger team and are worth fighting to keep.
  • "An individual performance problem is a systemic problem that impacts the entire team," she says. This is a valuable lesson that could determine whether the team fails or whether an organization advances to the next level.
Keep reading Show less
Photo by Martin Adams on Unsplash
Culture & Religion
She was walking down the forest path with a roll of white cloth in her hands. It was trailing behind her like a long veil.
Keep reading Show less
Scroll down to load more…
Quantcast