Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Stephen Hawking thought black holes were 'hairy'. New study suggests he was right.

The outer edges of a black hole might be "fuzzy" instead of neat and smooth.

NASA
  • A recent study analyzed observations of gravitational waves, first observed in 2015.
  • The data suggests, according to the researchers, that black holes aren't bounded by smooth event horizons, but rather by a sort of quantum fuzz, which would fit with the idea of Hawking radiation.
  • If confirmed, the findings could help scientists better understand how general relativity fits with quantum mechanics.
Keep reading Show less

Neutron Star Breakthrough Explains the Universe's Gold, Platinum, and Uranium

This discovery finally points to the source of Earth's precious heavy elements, also proves Einstein correct in more ways than one. 

Artist's impression of two neutron stars colliding. Credit: Dana Berry, SkyWorks Digital

Last September, scientists at a special observatory announced that they detected a gravitational wave for the first time. The detection took place in September, 2015, but wasn’t announced until last year. The observatory is known as the Laser Interferometer Gravitational-Wave Observatory (LIGO). It registered ripples in space-time formed from the collision of two black holes. Apparently, the fabric of the universe ripples just as water does.

Keep reading Show less

Einstein’s Gravitational Theory Leads to Nobel Prize Win for Scientists Who Proved It

These scientists scooped up the Nobel by detecting a ripple in space-time.

Albert Einstein. Credit: Getty Images.

Officials in Sweden have just announced the 2017 Nobel Prize in Physics. Three American scientists won for detecting, for the very first time, gravitational waves or ripples in space-time, which were first predicted by Einstein back in 1916. Rainer Weiss of MIT, and Barry Barish and Kip Thorne of Caltech were this year’s recipients.

Keep reading Show less

Why the 4th Gravitational Wave Is a “New Window on the Universe”

LIGO and Virgo reveal a gravitational wave was detected on two different continents. Here's what that means and why it matters.

A black hole devouring a neutron star. By Dana Berry/NASA.

The twin Laser Interferometer Gravitational-Wave Observatory (LIGO) is a collaborative effort. It’s basically a group of scientists who use specialized equipment to study gravitational waves. There are currently two such observatories in the US, one in Hanford, Washington and the other in Livingston, Louisiana. They use an interferometer, or a laser-based instrument, to detect even the minutest ripples in space-time as it relates to gravitational waves. The instrument is so delicate, it can pick up distortions one proton in width.  

Keep reading Show less

Gravitational Wave Astronomy: When Stars Die, New Sciences Are Born

Get ready for a decade of scientific revelations. Thanks to gravity waves, we have a completely new way to explore the universe.

Alex Filippenko is a Hertz Foundation Fellow and recipient of the prestigious Hertz Foundation Grant for graduate study in the applications of the physical, biological and engineering sciences. When the discovery of gravitational waves was announced in February 2016, Filippenko was awed. The researchers at LIGO (Laser Interferometer Gravitational-Wave Observatory) managed to prove a key prediction of Einstein's general theory of relativity: his theory of gravity. Here, Filippenko explains the mind-boggling way they did it, and the scope of discoveries that this hyper-precise technology will reveal to us over the next decade. With the support of the Fannie and John Hertz Foundation, Filippenko pursued a PhD in astronomy at the California Institute of Technology.

Keep reading Show less
Quantcast