Nano diamond batteries have one company all charged-up

Utilizing nuclear waste converted to diamonds, the company's batteries will reportedly last thousands of years in some cases.

Image source: Oleksii Biriukov/Shutterstock
  • Nuclear reactor parts converted to radioactive carbon-14 diamonds produce energy.
  • To keep them safe, the carbon-14 diamonds are encased in a second protective diamond layer.
  • The company predicts batteries for personal devices could last about nine years.
Keep reading Show less

Scientists have revived 100-million-year-old marine microbes

In one of the ocean's most lifeless places, scientists discover and resuscitate ancient organisms.

Image source: Morono, et al
  • Seemingly dead microbes from 100 million years ago spring back to life.
  • The microbes were buried deep beneath the Pacific's "Point Nemo."
  • There's crushing pressure beneath the seabed, but these microbes apparently survived anyway.

There is a place in the South Pacific that's as far as you can get from land. This "oceanic pole of inaccessibility" lies beneath the South Pacific Gyre that covers 10 percent of Earth's ocean surface. It's so remote that spacecraft are regularly guided down into its waters at the end of their missions. Says NASA, "It's in the Pacific Ocean and is pretty much the farthest place from any human civilization you can find."

There's another reason, though, that this so-called "Point Nemo" isn't like anywhere else. It's an oceanic desert, about as devoid of standard marine life as any stretch of water can be. Nutrients from land can't reach it, and currents keep its waters isolated from the rest of the ocean. There's also an excess of ultraviolet light out there.

While there is some microbial life floating in the area, a team of scientists from Japan and the U.S. wanted to know if anything could possibly be living in the area's desolate seabed. What they found and retrieved were seemingly lifeless microbes trapped down there for 100 million years. It turns out that the tiny organisms are still alive after all this time —all they needed was food and oxygen.

"Our main question was whether life could exist in such a nutrient-limited environment, or if this was a lifeless zone," says study leader microbiologist Yuki Morono of the Japan Agency for Marine-Earth Science and Technology. "And we wanted to know how long the microbes could sustain their life in a near-absence of food." Apparently hundred of millions of years. Take that, tardigrades.

The research in published in the journal Nature Communications.

Deep surprise

Map showing Point Nemo in Pacific Ocean

Image source: martinova4/vector illustration/Shutterstock/Big Think

It's hardly a hospitable environment down there, and the weight of all that water above presses down hard on anything beneath it. Organisms trapped under this kind of pressure typically die and fossilize, given a million years or so. Still, for some reason, these microbes evaded that fate.

Co-author Steven D'Hondt, a geomicrobiologist from University of Rhode Island, says, "We knew that there was life in deep sediment near the continents where there's a lot of buried organic matter. But what we found was that life extends in the deep ocean from the seafloor all the way to the underlying rocky basement."

Onboard study

Morono (left) and D'Hondt (right) examining cores aboard JODIES Resolution.

Image source: IODP JRSO/University of Rhode Island

The microbes were brought up through 3.7 miles of water from the ocean bottom during the JOIDES Resolution drill ship's 2010 expedition to the Gyre. The researchers extracted samples from an array of sites and depths, including pelagic clay sediments as deep as 75 meters (246 feet) beneath the sea floor.

Examining the sediment cores on the ship, the researchers found small numbers of oxygen-consuming microbes in every sample from every depth. The samples were removed from the cores to see if their occupants could be resuscitated. They were given oxygen and their presumed food of choice, substrates of carbon and nitrogen, by syringe. The samples were then sealed in glass vials and incubated.

microbe growth charts

Growth of microbes after being fed carbon (top) and nitrogen (bottom)

Image source: Morono, et al

Vials were opened after 21 days, 6 weeks, and 18 months. Stunningly, up to 99 percent of the microbes were revived, even those from the deepest — and thus oldest — cores. Some had increased 10,000 times their number, consuming all of the carbon and nitrogen they'd been given.

The scientists could hardly believe what they were seeing. "At first I was skeptical, but we found that up to 99.1 % of the microbes in sediment deposited 101.5 million years ago were still alive and were ready to eat," recalls Morono.

A bottomless research opportunity

"It shows that there are no limits to life in the old sediment of the world's ocean," says D-Hondt. "In the oldest sediment we've drilled, with the least amount of food, there are still living organisms, and they can wake up, grow and multiply."

Some have suggested that the microbe may be more recent descendants of their 100-million-year-old ancestors, but D'Hondt says there isn't enough in the way of nutrients or energy down there to support cell division. That is, unless there's some other form of energy that has been overlooked, say, some form of radiation. "If they are not dividing at all, they are living for 100 million years, but that seems insane," he says.

Study: Big homes have big carbon footprints

American homes are big and polluting. Here's how to fix that.

Pixabay
  • A new study on American homes finds that the homes of the wealthy use more energy than those of the poor.
  • The findings also include reviews of energy use that can be used to help reduce the residential carbon footprint.
  • The findings restate the important of a multi-faceted approach to solving climate change.
Keep reading Show less

Experiment proves old theory of how aliens might use black holes for energy

Researchers create a device to test a 50-year-old physics theory from the famed Roger Penrose.

Credit: NASA/CXC/M.Weiss
  • Scientists prove a 50-year-old physics theory by Roger Penrose.
  • The theory explains how energy could be harvested from black holes by advanced aliens.
  • Researchers from the University of Glasgow twisted sound waves to show that the effect Penrose described is real.
Keep reading Show less

A new device generates energy from shadows

By leveraging the difference between lit and shadowed areas, a new energy source perfect for wearables is invented.

Image source: Mark Adriane/Unsplash
  • Mobile devices used both indoors and out may benefit from a new energy collection system that thrives on mixed and changing lighting conditions.
  • Inexpensive new collection cells are said to be twice as efficient as commercial solar cells.
  • The system's "shadow effect" would also maker it useful as a sensor for tracking traffic.

For all of its promise, solar energy depends on the capture of light, and the more the better. For residents of sunny climes, that's great, with rooftop collection panels, and solar farms built by utilities in wide open, sunny spaces that can provide power to the rest of us. Now, though, a team of scientists at the National University of Singapore (NUS) has announced success at deriving energy from…shadows.

We've got plenty of them everywhere. "Shadows are omnipresent, and we often take them for granted," says research team leader Tan Swee Ching, who notes how shadows are usually anathema for energy collection. "In conventional photovoltaic or optoelectronic applications where a steady source of light is used to power devices, the presence of shadows is undesirable, since it degrades the performance of devices." His team has come up with something quite different, and Tan claims of their shadow-effect energy generator (SEG) that, "This novel concept of harvesting energy in the presence of shadows is unprecedented."

The research is published in the journal Energy & Environmental Science.

How it works

Image source: Royal Society of Chemistry/NUS

The energy produced by the SEG is generated from the differential between shadowed and lit areas. "In this work," says Tan. "We capitalized on the illumination contrast caused by shadows as an indirect source of power. The contrast in illumination induces a voltage difference between the shadow and illuminated sections, resulting in an electric current."

SEG cells are less expensive to produce than solar cells. Each SEG cell is a thin film of gold on a silicon wafer, and an entire system is a set of four of these cells arrayed on a flexible, transparent plastic film. Experiments suggest the system, in use, is twice as efficient as commercial solar cells.

An SEG cell's shadow effect works best when it is half in light and half in shadow, "as this gives enough area for charge generation and collection respectively," says co-team leader Andrew Wee. When the SEG is entirely in shadow or in light, it doesn't produce a charge.

Gold in them that shadows

Image source: stockfour/Dayna More/Dmitry Naumov/Shutterstock/Big Think

To be sure, the amount of energy that NUS researchers have thus far extracted is small, but it's enough to power a digital watch. The researchers envision the SEG system harvesting ambient light to power smart phones and AR glasses that are used both outdoors and indoors. While such devices can run on solar batteries, solar is only replenished outdoors, and the SEG could "scavenge energy from both illumination and shadows associated with low light intensities to maximize the efficiency of energy harvesting," says Tan. It seems clear that we're on the cusp of the era of wearables — AR visionwear, smart fabrics, smart watches, and so on — and so Tan considers the arrival of the SEG "exciting and timely."

The researchers also note an additional application for which the SEG seems a natural: It can function as a self-powered sensor for monitoring moving objects. The shadow caused by a passing object would trigger the SEG sensor, which can then record the event.

Next up for the team is investigating constructing cells using other, less costly materials than gold to make them even less expensive to produce.

Quantcast