A tectonic plate may have split apart, pulling Europe toward Canada

Geologists may have spotted evidence of the beginning stages of a subduction zone, a process that drives the movement of Earth's tectonic plates.

  • Geologists have long puzzled over a flat, featureless region off the coast of Portugal that's been the location of several earthquakes.
  • A team may have confirmed that a drip-shaped mass, buried 155 miles below the seafloor, might be responsible for the seismic activity.
  • If confirmed, the drip-shaped anomaly also suggests that geologists have for the first time observed the early stages of a subduction zone.

Since 1969, some geologists have been puzzled by a 7.9-magnitude earthquake struck off the coast of Portugal. What was peculiar was the location of the epicenter: a flat, featureless section of seabed. Normally, you'd expect to see faults, underwater mountains, or other signs of tectonic activity near the site of such a powerful earthquake.

Now, a team of geologists may have the explanation: Buried 155 miles below the seafloor near Portugal is a massive drip-like shape anomaly that seems to have been formed when the bottom of a tectonic plate began peeling away from its top.

At the European Geosciences Union meeting in April, the team suggested the findings could represent the beginnings of a baby subduction zone. It would be the first time scientists have ever directly observed such activity within tectonic plates, and the findings would also suggest that Europe is in the early stages of a centimeters-per-year tectonic voyage to Canada.

"It's a big statement," marine geologist João Duarte told National Geographic, which on May 6 published a story on the findings. "Maybe this is not the solution to all the problems. But I think we have something new here."

He added that how exactly subduction zones form is one of the biggest unsolved mysteries in plate tectonics. For the most part, geologists only observed new subduction in places where there's ongoing subduction.

"Most of what we know so far is that new subduction tends to stay in the places where we already have ongoing subduction," Fabio Crameri, a Geodynamic modeller who attended the EGU lecture, told National Geographic. "But that doesn't mean it won't happen."

KDS4444 via Wikipedia

Interestingly, several geologists over the decades have theorized that a drip-shaped mass might exist some 155 miles below the surface. In 1975, geologist Michael Purdy even generated an image that looks strikingly similar to the recent findings. In 2012, a team was able to identify the mass by using seismic waves. And in 2018, a team used 3D teleseismic P-wave tomographyP-wave tomography technology to examine the anomaly once again.

To figure out why earthquakes were occurring this strange mass, and to test the hypothesis that the mass was caused by the bottom of a tectonic plate peeling away from its top, Duarte and his colleagues created numerical models.

"The key, [Duarte] says, likely lies in an seemingly innocuous layer in the middle of the tectonic plate," wrote Maya Wei-Haas for National Geographic. "Past work suggested that water percolating through the ocean plate's web of fractures had reacted with the rocks below the surface, transforming them into soft green minerals in a process known as serpentinization. Perhaps this layer provided just enough weakness to allow the denser bottom of the plate to peel away. Scientists believe tectonic peeling may be common under thick continental plates through a slightly different mechanism, and possibly even in old subduction zones, but it has never been documented before in pristine oceanic plates."

Duarte's team said the findings, if confirmed, would help geologists better understand how Earth's tectonic plates interact.

"The identification of a first case of oceanic lithospheric delamination will certainly contribute to further our understanding of the dynamics of tectonic plates," they wrote in a recent paper. "Old oceanic lithosphere may be prone to gravitational instabilities, which may play a fundamental role in the process of subduction initiation."

A still from the film "We Became Fragments" by Luisa Conlon , Lacy Roberts and Hanna Miller, part of the Global Oneness Project library.

Photo: Luisa Conlon , Lacy Roberts and Hanna Miller / Global Oneness Project
Sponsored by Charles Koch Foundation
  • Stories are at the heart of learning, writes Cleary Vaughan-Lee, Executive Director for the Global Oneness Project. They have always challenged us to think beyond ourselves, expanding our experience and revealing deep truths.
  • Vaughan-Lee explains 6 ways that storytelling can foster empathy and deliver powerful learning experiences.
  • Global Oneness Project is a free library of stories—containing short documentaries, photo essays, and essays—that each contain a companion lesson plan and learning activities for students so they can expand their experience of the world.
Keep reading Show less

Four philosophers who realized they were completely wrong about things

Philosophers like to present their works as if everything before it was wrong. Sometimes, they even say they have ended the need for more philosophy. So, what happens when somebody realizes they were mistaken?

Sartre and Wittgenstein realize they were mistaken. (Getty Images)
Culture & Religion

Sometimes philosophers are wrong and admitting that you could be wrong is a big part of being a real philosopher. While most philosophers make minor adjustments to their arguments to correct for mistakes, others make large shifts in their thinking. Here, we have four philosophers who went back on what they said earlier in often radical ways. 

Keep reading Show less

5 charts reveal key racial inequality gaps in the US

The inequalities impact everything from education to health.

ANGELA WEISS/AFP via Getty Images
Politics & Current Affairs

America is experiencing some of its most widespread civil unrest in years following the death of George Floyd.

Keep reading Show less

Ask an astronomer: What makes neutron stars so special?

Astrophysicist Michelle Thaller talks ISS and why NICER is so important.

Michelle Thaller - Ask A Scientist - Nasa's NICER Mission FULL SCREENER
Videos
  • Being outside of Earth's atmosphere while also being able to look down on the planet is both a challenge and a unique benefit for astronauts conducting important and innovative experiments aboard the International Space Station.
  • NASA astrophysicist Michelle Thaller explains why one such project, known as NICER (Neutron star Interior Composition Explorer), is "one of the most amazing discoveries of the last year."
  • Researchers used x-ray light data from NICER to map the surface of neutrons (the spinning remnants of dead stars 10-50 times the mass of our sun). Thaller explains how this data can be used to create a clock more accurate than any on Earth, as well as a GPS device that can be used anywhere in the galaxy.
Scroll down to load more…