Physicists discover how to safely create star power on Earth

Princeton scientists find a new way to control nuclear fusion reactions.

Physicists discover how to safely create star power on Earth

Fusion reactions on the sun.

NASA's Solar Dynamics Observatory. (Courtesy: NASA/SDO)
  • A new study from Princeton physicists successfully uses boron powder to control nuclear reactions in plasma.
  • Creating plasma can lead to an unlimited supply of energy.
  • The new method is cheaper and less dangerous than previous approaches.


Humanity's huge appetite for energy has led scientists to attempt harnessing nuclear fusion, the power inherent to the sun and other stars. Now, a new study from Princeton physicists found a method that can aid the safe creation of fusion on Earth, potentially leading to a limitless supply of electricity.

Fusion reactors work by combining light elements like hydrogen into plasma – a superhot and charged state of matter. During the fusion process, two lighter atomic nuclei are combined into a heavier nucleus, releasing energy.

The resulting plasma can be employed into generating a tremendous amount of energy but the fusion facilities, called tokamaks, face the hard task of trying to keep impurities out of reactions. These can lower the efficiency of the fusion, while the goal of the scientists is to keep the plasma as hot as it can be, actually ten times hotter than the sun's core. This maximizes fusion reactions and leads to the creation of the greatest amount of electricity.

What scientists from the Princeton Plasma Physics Laboratory (PPPL) discovered is a way to inject boron powder into plasma, allowing for greater control, lowering greenhouse gases, and getting rid of long-term radioactive waste.

PPPL physicist Robert Lunsford was the lead author of the paper, published in Nuclear Fusion, that outlined the accomplishment.

"The main goal of the experiment was to see if we could lay down a layer of boron using a powder injector," said Lunsford in a press release. "So far, the experiment appears to have been successful."

Michio Kaku: Energies of the Future

By 2030 the physicist expects that we will have hot fusion reactors.

The method devised by Lunsford and his team uses boron to prevent tungsten in tokamak walls from interacting with the plasma. The tungsten can cause the plasma particles to cool, lowering reaction efficiency. The so-called boronization of surfaces that face the plasma is easier to accomplish with the powder, as it's something that can be done while the machine is already running. This can allow the fusion device to be an uninterrupted source of energy. "This is one way to get to a steady-state fusion machine," remarked Lunsford.

The powder method is also cheaper and less dangerous than the current practice of injecting potentially explosive diborane gas into the plasma.

The scientists envision further investigating the uses of boron powder, optimistic that this approach can allow them to understand the behavior of plasma in unprecedented depth.

Check out their new paper here.

PPPL physicist Robert Lunsford.

CREDIT: Elle Starkman / PPPL Office of Communications

How New York's largest hospital system is predicting COVID-19 spikes

Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.

Credit: Getty Images
Sponsored by Northwell Health
  • The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
  • The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
  • Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
Keep reading Show less

Listen: Scientists re-create voice of 3,000-year-old Egyptian mummy

Scientists used CT scanning and 3D-printing technology to re-create the voice of Nesyamun, an ancient Egyptian priest.

Surprising Science
  • Scientists printed a 3D replica of the vocal tract of Nesyamun, an Egyptian priest whose mummified corpse has been on display in the UK for two centuries.
  • With the help of an electronic device, the reproduced voice is able to "speak" a vowel noise.
  • The team behind the "Voices of the Past" project suggest reproducing ancient voices could make museum experiences more dynamic.
Keep reading Show less

Put on a happy face? “Deep acting” associated with improved work life

New research suggests you can't fake your emotional state to improve your work life — you have to feel it.

Credit: Columbia Pictures
Personal Growth
  • Deep acting is the work strategy of regulating your emotions to match a desired state.
  • New research suggests that deep acting reduces fatigue, improves trust, and advances goal progress over other regulation strategies.
  • Further research suggests learning to attune our emotions for deep acting is a beneficial work-life strategy.
  • Keep reading Show less

    World's oldest work of art found in a hidden Indonesian valley

    Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.

    Pig painting at Leang Tedongnge in Indonesia, made at 45,500 years ago.

    Credit: Maxime Aubert
    Surprising Science
    • Archaeologists find a cave painting of a wild pig that is at least 45,500 years old.
    • The painting is the earliest known work of representational art.
    • The discovery was made in a remote valley on the Indonesian island of Sulawesi.
    Keep reading Show less
    Mind & Brain

    What can Avicenna teach us about the mind-body problem?

    The Persian polymath and philosopher of the Islamic Golden Age teaches us about self-awareness.

    Scroll down to load more…
    Quantcast