Why "nuclear pasta" is the strongest material in the universe

Through computationally intensive computer simulations, researchers have discovered that "nuclear pasta," found in the crusts of neutron stars, is the strongest material in the universe.

  • The strongest material in the universe may be the whimsically named "nuclear pasta."
  • You can find this substance in the crust of neutron stars.
  • This amazing material is super-dense, and is 10 billion times harder to break than steel.

Superman is known as the "Man of Steel" for his strength and indestructibility. But the discovery of a new material that's 10 billion times harder to break than steel begs the question—is it time for a new superhero known as "Nuclear Pasta"? That's the name of the substance that a team of researchers thinks is the strongest known material in the universe.

Unlike humans, when stars reach a certain age, they do not just wither and die, but they explode, collapsing into a mass of neurons. The resulting space entity, known as a neutron star, is incredibly dense. So much so that previous research showed that the surface of a such a star would feature amazingly strong material. The new research, which involved the largest-ever computer simulations of a neutron star's crust, proposes that "nuclear pasta," the material just under the surface, is actually stronger.

The competition between forces from protons and neutrons inside a neutron star create super-dense shapes that look like long cylinders or flat planes, referred to as "spaghetti" and "lasagna," respectively. That's also where we get the overall name of nuclear pasta.

Caplan & Horowitz/arXiv

Diagrams illustrating the different types of so-called nuclear pasta.

The researchers' computer simulations needed 2 million hours of processor time before completion, which would be, according to a press release from McGill University, "the equivalent of 250 years on a laptop with a single good GPU." Fortunately, the researchers had access to a supercomputer, although it still took a couple of years. The scientists' simulations consisted of stretching and deforming the nuclear pasta to see how it behaved and what it would take to break it.

While they were able to discover just how strong nuclear pasta seems to be, no one is holding their breath that we'll be sending out missions to mine this substance any time soon. Instead, the discovery has other significant applications.

One of the study's co-authors, Matthew Caplan, a postdoctoral research fellow at McGill University, said the neutron stars would be "a hundred trillion times denser than anything on earth." Understanding what's inside them would be valuable for astronomers because now only the outer layer of such starts can be observed.

"A lot of interesting physics is going on here under extreme conditions and so understanding the physical properties of a neutron star is a way for scientists to test their theories and models," Caplan added. "With this result, many problems need to be revisited. How large a mountain can you build on a neutron star before the crust breaks and it collapses? What will it look like? And most importantly, how can astronomers observe it?"

Another possibility worth studying is that, due to its instability, nuclear pasta might generate gravitational waves. It may be possible to observe them at some point here on Earth by utilizing very sensitive equipment.

The team of scientists also included A. S. Schneider from California Institute of Technology and C. J. Horowitz from Indiana University.

Check out the study "The elasticity of nuclear pasta," published in Physical Review Letters.


Tesla introduces new Model 3 at $45,000

The new version's battery has a shorter range and a price $4,000 lower than the previous starting price.

Tesla Model 3 (Photo: Tesla)
Technology & Innovation
  • Tesla's new version of the Model 3 costs $45,000 and can travel 260 miles on one charge.
  • The Model 3 is the best-selling luxury car in the U.S.
  • Tesla still has yet to introduce a fully self-driving car, even though it once offered the capability as an option to be installed at a future date.
Keep reading Show less

The surprising psychology of sex with your ex

We all know sleeping with your ex is a bad idea, or is it?

Shutterstock
Sex & Relationships
  • In the first study of its kind, researchers have found sex with an ex didn't prevent people from getting over their relationship.
  • Instead of feeling worse about their breakup after a hookup, the new singles who attempted sexual contact with their ex reported feeling better afterwards.
  • The findings suggest that not every piece of relationship advice is to be taken at face value.
Keep reading Show less

Relationship hack: Why class clowns make better partners

Want a happy, satisfying relationship? Psychologists say the best way is to learn to take a joke.

Photo by Tim Mossholder on Unsplash
Sex & Relationships
  • New research looks at how partners' attitudes toward humor affects the overall quality of a relationship.
  • Out of the three basic types of people, people who love to be laughed at made for better partners.
  • Fine-tuning your sense of humor might be the secret to a healthy, happy, and committed relationship.
Keep reading Show less

Single algae cells can help deliver targeted medicine

Tiny and efficient, these biodegradable single cells show promise as a way to target hard-to-reach cancers.

Credit: O. Yasa et al./Adv. Mater.
Surprising Science
  • Scientists in Germany have found a potential improvement on the idea of bacteria delivering medicine.
  • This kind of microtargeting could be useful in cancer treatments.
  • The microswimmers are biodegradable and easy to produce.

Metin Sitti and colleagues at the Max Planck Institute in Germany recently demonstrated that tiny drugs could be attached to individual algae cells and that those algae cells could then be directed through body-like fluid by a magnetic field.

The results were recently published in Advanced Materials, and the paper as a whole offers up a striking portrait of precision and usefulness, perhaps loosely comparable in overall quality to recent work done by The Yale Quantum Institute. It begins by noting that medicine has been attached to bacteria cells before, but bacteria can multiply and end up causing more harm than good.

A potential solution to the problem seems to have been found in an algal cell: the intended object of delivery is given a different electrical charge than the algal cell, which helps attach the object to the cell. The movement of the algae was then tested in 2D and 3D. (The study calls this cell a 'microswimmer.') It would later be found that "3D mean swimming speed of the algal microswimmers increased more than twofold compared to their 2D mean swimming speed." The study continues —

More interestingly, 3D mean swimming speed of the algal microswimmers in the presence of a uniform magnetic field in the x-direction was approximately threefolds higher than their 2D mean swimming speed.

After the 2D and 3D speed of the algal was examined, it was then tested in something made to approximate human fluid, including what they call 'human tubal fluid' (think of the fallopian tubes), plasma, and blood. They then moved to test the compatibility of the microswimmer with cervical cancer cells, ovarian cancer cells, and healthy cells. They found that the microswimmer didn't follow the path of bacteria cells and create something toxic.

The next logical steps from the study include testing this inside a living organism in order to assess the safety of the procedure. Potential future research could include examining how effective this method of drug delivery could be in targeting "diseases in deep body locations," as in, the reproductive and gastrointestinal tracts.

Yes, Mega Millions just passed $1 billion. What does that look like?

It's hard to imagine such a number. But these images will help you try.

https://commons.wikimedia.org/wiki/File:Megamillions_tickets.jpg
News/Social

The Mega Millions lottery just passed $1 billion for tonight's drawing.

What does that even look like, when represented by various currencies?

It takes just 6 numbers to win. You can only, however, purchase tickets up until 10:45 ET tonight.

Keep reading Show less

Gary Shteyngart: reality catches up to dystopian fiction

Our modern-day Kafka on his new novel Lake Success and the dark comedy that in 2018 pretty much writes itself

Technology & Innovation
  • riding the Greyhounds of hell, from New York to El Paso
  • the alternate reality of hedge fund traders
Keep reading Show less

How lifelong learning makes you shine in the job market

Here's why the school you went to is less relevant than ever.

Videos
  • Learning agility is the ability to learn new things quickly and be aware of the trends that are emerging in your industry. It's the most important job skill hiring managers should be looking for and job seekers should be putting forward, says Kelly Palmer.
  • Want to test your learning agility? Answer this practice interview question: "What did you learn last week?"
  • Hiring people based on the school they went to is less relevant than ever. Why? Palmer explains: "If I asked you, "Tell me about your health," and you told me you ran a marathon 10 years ago, does that really tell me what your health is like? Not really." It's what you can offer now and how agile you are that matters.
  • Kelly Palmer is the author of The Expertise Economy.

Inside China's plan to put an 'artificial moon' in orbit

By 2022, there may be as many as three artificial moons floating above the city of Chengdu.

Photo by Schubert Ciencia via Flickr/Big Think
Technology & Innovation
  • Chinese state media announced plans to put an artificial moon in orbit by 2020.
  • Just like the real moon, the artificial moon will reflect sunlight onto the Earth in order to cut down on electricity consumption.
  • If the mission is a success, there are plans to launch three other artificial moons in 2022.
Keep reading Show less