Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Scientists invent method to extract gold from liquid waste

The next gold rush might take place in our sewers.

Shutterstock
  • Even though we think of it as exceedingly rare, gold can be found all around us.
  • The trouble is, most of the gold is hard to get at; its too diluted in our waste or ocean waters to effectively extract.
  • This new technique quickly, easily, and reliably extracts gold from most liquids.

Even though the thought of gold calls to mind incredible wealth hidden underground or horded away in Fort Knox, you can actually find the stuff all over the place. there's gold in nearly every kind of consumer electronic, gold in our sewage, gold in the cracks of New York City sidewalks, and even trace amounts in our brains. The trouble isn't that gold is rare, per se, it's just hard to get to.

In human history, we've mined about 190,000 tons of gold out of the ground. If you want to visualize that amount, it would fit in a box about 20 m on each side; not all that much in the grand scheme of things. We've been able to get at this because it was stored in a way that's relatively easy for us to access. It was buried in the Earth, so we just had to dig it up. In contrast, we've estimated that there's about 20 million tons of gold in the ocean—it's just distributed throughout the seas, making it difficult to refine and extract.

In the past, we didn't use gold for much of anything besides as a method to store value, so the fact that most gold on Earth was inaccessible was more of a feature than a bug. But now, we're increasingly finding practical applications for the precious metal. It can be used in medicine to treat arthritis or for dentistry; it's an excellent conductor, so it can be used in electronics and communication technology; and it reflects infrared radiation, so we use it on our spacecraft and spacesuits. Suddenly, getting at those 20 million tons of gold in the ocean and elsewhere on Earth has become more about technological and societal progress than about accumulating wealth.

New research from the Journal of the American Chemical Society has uncovered one of the most effective methods to date to extract gold from liquids. That includes electronic waste, sewage, ocean water, waste water—almost any liquid where we might find gold. Just to highlight how potentially useful this is, sewage from Switzerland alone is estimated to carry away 1.8 million dollars' worth of gold every year.

Making a sponge for gold

The object to the left shows the basic framework, a lattice of iron ion clusters connected by organic molecules. On this structure, a polymer that helps catch gold is coated, represented by the purple dots.

Sun et al. 2018

The method consists of a metal-organic framework—essentially, clusters metal ions connected by an organic "skeleton." In this case, the framework consists of iron ions connected by an organic compound called 1,3,5-benzenetricarboxylate. The researchers then coated this structure in a polymer with an even more difficult-to-pronounce name (for the curious, it's poly-para-phenylenediamine, or PpDA), which helps the framework catch stray molecules of gold.

Essentially, the framework and polymer work as a very granular sponge, only this sponge doesn't hold soap or water; instead, it holds gold.

Other researchers have built structures like this one before, but the new framework works exceptionally well. For every gram of this gold-seeking sponge submerged in a liquid, it can hold up to a gram of gold. What's more, it can catch 99% of the gold in a given solution in as little as two minutes.

Once the framework's sucked up the gold, it can easily be destroyed to retrieve the gold captured inside. The figure below shows how this works. After it's been suspended in a gold-containing solution, the framework is dissolved in hydrochloric acid. After some time, all that's left is 23.9 K gold, which is the highest purity of gold reclaimed from similar projects.

On the left, a sample of liquid is shown with the new material suspended inside. After the material is dissolved in acid, 23.9 K gold particles are leftover. On the right side, the gold particles are shown under a microscope.

Sun et al. 2018

The researchers tested the method out in a few different real-world cases. One of the most useful applications for a method like this is in reclaiming gold from electronic waste. It can take as much as a ton of gold ore to build just 40 smartphones, so getting the gold out of electronic waste would be extremely practical.

The researchers physically removed the metal from a CPU and treated it with some chemicals to form a solution. In the figure below, you can see that this produced a blue solution. So far, this technique is nothing new. The trouble is that a CPU also contains copper and nickel as well as gold, all of which is mixed up in this solution. So, the trick is how to get the really valuable metal out of the mixture. Using the new method, the researchers managed to get 95% of the gold out of the solution.

The top-left image shows a regular CPU. To its right, we can see the various elements that comprise the CPU (copper, nickel, and gold). In the bottom-left corner, we can see the CPU after its material has been physically removed. The image to its right shows the material dissolved into a blue solution and a graph showing how much of each material the new method recovered from the solution.

Sun et al. 2018

They found similar results with different liquids, too. The new framework captured 99% of gold from Swiss sewage (which, if you'll recall, allegedly washes away $1.8 million worth of gold every year). The researchers also tried extracting gold from seawater, and, once again, they were able to extract 99% of gold from their sample. These last two examples are especially promising; sewage and seawater contain a huge variety of different compounds that could interfere with any kind of filtering system.

We're still a long way off from, say, filtering the oceans for the precious metals they contain. But as we continue to use up the easily accessible resources buried in the Earth, exploring new techniques like this will be important if we want to continue to use smartphones, explore space, and collectively advance as a society.

Hints of the 4th dimension have been detected by physicists

What would it be like to experience the 4th dimension?

Two different experiments show hints of a 4th spatial dimension. Credit: Zilberberg Group / ETH Zürich
Technology & Innovation

Physicists have understood at least theoretically, that there may be higher dimensions, besides our normal three. The first clue came in 1905 when Einstein developed his theory of special relativity. Of course, by dimensions we’re talking about length, width, and height. Generally speaking, when we talk about a fourth dimension, it’s considered space-time. But here, physicists mean a spatial dimension beyond the normal three, not a parallel universe, as such dimensions are mistaken for in popular sci-fi shows.

Keep reading Show less

A new hydrogel might be strong enough for knee replacements

Duke University researchers might have solved a half-century old problem.

Lee Jae-Sung of Korea Republic lies on the pitch holding his knee during the 2018 FIFA World Cup Russia group F match between Korea Republic and Germany at Kazan Arena on June 27, 2018 in Kazan, Russia.

Photo by Alexander Hassenstein/Getty Images
Technology & Innovation
  • Duke University researchers created a hydrogel that appears to be as strong and flexible as human cartilage.
  • The blend of three polymers provides enough flexibility and durability to mimic the knee.
  • The next step is to test this hydrogel in sheep; human use can take at least three years.
Keep reading Show less

Predicting PTSD symptoms becomes possible with a new test

An algorithm may allow doctors to assess PTSD candidates for early intervention after traumatic ER visits.

Image source: camillo jimenez/Unsplash
Technology & Innovation
  • 10-15% of people visiting emergency rooms eventually develop symptoms of long-lasting PTSD.
  • Early treatment is available but there's been no way to tell who needs it.
  • Using clinical data already being collected, machine learning can identify who's at risk.

The psychological scars a traumatic experience can leave behind may have a more profound effect on a person than the original traumatic experience. Long after an acute emergency is resolved, victims of post-traumatic stress disorder (PTSD) continue to suffer its consequences.

In the U.S. some 30 million patients are annually treated in emergency departments (EDs) for a range of traumatic injuries. Add to that urgent admissions to the ED with the onset of COVID-19 symptoms. Health experts predict that some 10 percent to 15 percent of these people will develop long-lasting PTSD within a year of the initial incident. While there are interventions that can help individuals avoid PTSD, there's been no reliable way to identify those most likely to need it.

That may now have changed. A multi-disciplinary team of researchers has developed a method for predicting who is most likely to develop PTSD after a traumatic emergency-room experience. Their study is published in the journal Nature Medicine.

70 data points and machine learning

nurse wrapping patient's arm

Image source: Creators Collective/Unsplash

Study lead author Katharina Schultebraucks of Columbia University's Department Vagelos College of Physicians and Surgeons says:

"For many trauma patients, the ED visit is often their sole contact with the health care system. The time immediately after a traumatic injury is a critical window for identifying people at risk for PTSD and arranging appropriate follow-up treatment. The earlier we can treat those at risk, the better the likely outcomes."

The new PTSD test uses machine learning and 70 clinical data points plus a clinical stress-level assessment to develop a PTSD score for an individual that identifies their risk of acquiring the condition.

Among the 70 data points are stress hormone levels, inflammatory signals, high blood pressure, and an anxiety-level assessment. Says Schultebraucks, "We selected measures that are routinely collected in the ED and logged in the electronic medical record, plus answers to a few short questions about the psychological stress response. The idea was to create a tool that would be universally available and would add little burden to ED personnel."

Researchers used data from adult trauma survivors in Atlanta, Georgia (377 individuals) and New York City (221 individuals) to test their system.

Of this cohort, 90 percent of those predicted to be at high risk developed long-lasting PTSD symptoms within a year of the initial traumatic event — just 5 percent of people who never developed PTSD symptoms had been erroneously identified as being at risk.

On the other side of the coin, 29 percent of individuals were 'false negatives," tagged by the algorithm as not being at risk of PTSD, but then developing symptoms.

Going forward

person leaning their head on another's shoulder

Image source: Külli Kittus/Unsplash

Schultebraucks looks forward to more testing as the researchers continue to refine their algorithm and to instill confidence in the approach among ED clinicians: "Because previous models for predicting PTSD risk have not been validated in independent samples like our model, they haven't been adopted in clinical practice." She expects that, "Testing and validation of our model in larger samples will be necessary for the algorithm to be ready-to-use in the general population."

"Currently only 7% of level-1 trauma centers routinely screen for PTSD," notes Schultebraucks. "We hope that the algorithm will provide ED clinicians with a rapid, automatic readout that they could use for discharge planning and the prevention of PTSD." She envisions the algorithm being implemented in the future as a feature of electronic medical records.

The researchers also plan to test their algorithm at predicting PTSD in people whose traumatic experiences come in the form of health events such as heart attacks and strokes, as opposed to visits to the emergency department.

Surprising Science

How often do vaccine trials hit paydirt?

Vaccines find more success in development than any other kind of drug, but have been relatively neglected in recent decades.

Scroll down to load more…
Quantcast