Scientists are trying revive woolly mammoth DNA to fight climate change

Scientists are investigating whether it’s possible to give modern elephants an ancient boost by reviving woolly mammoth DNA—all to curb climate change.

Woolly Mammoth. Image: Flying Puffin (MammutUploaded by FunkMonk


Scientists are investigating whether it’s possible to give modern elephants an ancient boost by reviving woolly mammoth DNA—all to curb climate change.

The ideal outcome for the scientists would be to genetically engineer elephants that are very similar to Asian elephants of today, but with the added ability to withstand colder temperatures, like the woolly mammoths that died out some 4,000 years ago. Doing so would give the endangered elephants, of which there are an estimated 35,000 to 40,000 on the planet, a greater chance of survival.

It could also help mitigate the effects of climate change. That’s because there’s a huge amount of carbon—1,400 gigatons—trapped in the permafrost located in the northern regions of the planet, and rising temperatures could melt the permafrost, resulting in the rapid release of carbon into the atmosphere.

Perhaps surprisingly, woolly mammoths were quite good at keeping the ground cool.

“The elephants that lived in the past — and elephants possibly in the future — knocked down trees and allowed the cold air to hit the ground and keep the cold in the winter, and they helped the grass grow and reflect the sunlight in the summer,” George Church, a Harvard and MIT geneticist who is heading the Harvard Woolly Mammoth Revival team, told Live Science at the 2018 Liberty Science Center Genius Gala. “Those two [factors] combined could result in a huge cooling of the soil and a rich ecosystem.”

Without woolly mammoths, trees grow tall and a fluffy blanket of snow actually warms the permafrost.

“Fluffy snow is like a down blanket keeping the warm summer soil away from the -40 degree winter winds,” Church told Live Science.


Asian elephants. Image: tontantravel

Today’s Asian elephants wouldn’t be able to survive in the “mammoth steppe,” a massive swath of cold, dry land that stretched across northern parts of globe where mammoths used to roam. But if scientists can successfully use gene-editing systems like CRISPR to introduce woolly mammoth genes to elephants, that might change.

“It could just be 44 genes [that] might be sufficient to make them adapted again to the cold,” Church told Live Science.

Due to ethical concerns, scientists would need to develop the elephant-mammoth hybrid in the lab instead of implanting embryos in live elephants. It would be a long and gradual process. First, scientists would need to develop hybrid cells, then specialized tissues, and, if successful, they’d eventually attempt to grow a modified elephant in an artificial womb.

In the meantime, the world’s permafrost will continue to melt at a relatively rapid pace. An annual report released by the National Oceanic and Atmospheric Administration in December 2017 showed that northern regions of the planet are warming twice as fast as the rest of the world.

“What happens in the Arctic doesn’t stay in the Arctic; it affects the rest of the planet,” said acting NOAA chief Timothy Gallaudet. “The Arctic has huge influence on the world at large.”

Yug, age 7, and Alia, age 10, both entered Let Grow's "Independence Challenge" essay contest.

Photos: Courtesy of Let Grow
Sponsored by Charles Koch Foundation
  • The coronavirus pandemic may have a silver lining: It shows how insanely resourceful kids really are.
  • Let Grow, a non-profit promoting independence as a critical part of childhood, ran an "Independence Challenge" essay contest for kids. Here are a few of the amazing essays that came in.
  • Download Let Grow's free Independence Kit with ideas for kids.
Keep reading Show less

Four philosophers who realized they were completely wrong about things

Philosophers like to present their works as if everything before it was wrong. Sometimes, they even say they have ended the need for more philosophy. So, what happens when somebody realizes they were mistaken?

Sartre and Wittgenstein realize they were mistaken. (Getty Images)
Culture & Religion

Sometimes philosophers are wrong and admitting that you could be wrong is a big part of being a real philosopher. While most philosophers make minor adjustments to their arguments to correct for mistakes, others make large shifts in their thinking. Here, we have four philosophers who went back on what they said earlier in often radical ways. 

Keep reading Show less

The surprise reason sleep-deprivation kills lies in the gut

New research establishes an unexpected connection.

Reactive oxygen species (ROS) accumulate in the gut of sleep-deprived fruit flies, one (left), seven (center) and ten (right) days without sleep.

Image source: Vaccaro et al, 2020/Harvard Medical School
Surprising Science
  • A study provides further confirmation that a prolonged lack of sleep can result in early mortality.
  • Surprisingly, the direct cause seems to be a buildup of Reactive Oxygen Species in the gut produced by sleeplessness.
  • When the buildup is neutralized, a normal lifespan is restored.

We don't have to tell you what it feels like when you don't get enough sleep. A night or two of that can be miserable; long-term sleeplessness is out-and-out debilitating. Though we know from personal experience that we need sleep — our cognitive, metabolic, cardiovascular, and immune functioning depend on it — a lack of it does more than just make you feel like you want to die. It can actually kill you, according to study of rats published in 1989. But why?

A new study answers that question, and in an unexpected way. It appears that the sleeplessness/death connection has nothing to do with the brain or nervous system as many have assumed — it happens in your gut. Equally amazing, the study's authors were able to reverse the ill effects with antioxidants.

The study, from researchers at Harvard Medical School (HMS), is published in the journal Cell.

An unexpected culprit

The new research examines the mechanisms at play in sleep-deprived fruit flies and in mice — long-term sleep-deprivation experiments with humans are considered ethically iffy.

What the scientists found is that death from sleep deprivation is always preceded by a buildup of Reactive Oxygen Species (ROS) in the gut. These are not, as their name implies, living organisms. ROS are reactive molecules that are part of the immune system's response to invading microbes, and recent research suggests they're paradoxically key players in normal cell signal transduction and cell cycling as well. However, having an excess of ROS leads to oxidative stress, which is linked to "macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging." To prevent this, cellular defenses typically maintain a balance between ROS production and removal.

"We took an unbiased approach and searched throughout the body for indicators of damage from sleep deprivation," says senior study author Dragana Rogulja, admitting, "We were surprised to find it was the gut that plays a key role in causing death." The accumulation occurred in both sleep-deprived fruit flies and mice.

"Even more surprising," Rogulja recalls, "we found that premature death could be prevented. Each morning, we would all gather around to look at the flies, with disbelief to be honest. What we saw is that every time we could neutralize ROS in the gut, we could rescue the flies." Fruit flies given any of 11 antioxidant compounds — including melatonin, lipoic acid and NAD — that neutralize ROS buildups remained active and lived a normal length of time in spite of sleep deprivation. (The researchers note that these antioxidants did not extend the lifespans of non-sleep deprived control subjects.)

fly with thought bubble that says "What? I'm awake!"

Image source: Tomasz Klejdysz/Shutterstock/Big Think

The experiments

The study's tests were managed by co-first authors Alexandra Vaccaro and Yosef Kaplan Dor, both research fellows at HMS.

You may wonder how you compel a fruit fly to sleep, or for that matter, how you keep one awake. The researchers ascertained that fruit flies doze off in response to being shaken, and thus were the control subjects induced to snooze in their individual, warmed tubes. Each subject occupied its own 29 °C (84F) tube.

For their sleepless cohort, fruit flies were genetically manipulated to express a heat-sensitive protein in specific neurons. These neurons are known to suppress sleep, and did so — the fruit flies' activity levels, or lack thereof, were tracked using infrared beams.

Starting at Day 10 of sleep deprivation, fruit flies began dying, with all of them dead by Day 20. Control flies lived up to 40 days.

The scientists sought out markers that would indicate cell damage in their sleepless subjects. They saw no difference in brain tissue and elsewhere between the well-rested and sleep-deprived fruit flies, with the exception of one fruit fly.

However, in the guts of sleep-deprived fruit flies was a massive accumulation of ROS, which peaked around Day 10. Says Vaccaro, "We found that sleep-deprived flies were dying at the same pace, every time, and when we looked at markers of cell damage and death, the one tissue that really stood out was the gut." She adds, "I remember when we did the first experiment, you could immediately tell under the microscope that there was a striking difference. That almost never happens in lab research."

The experiments were repeated with mice who were gently kept awake for five days. Again, ROS built up over time in their small and large intestines but nowhere else.

As noted above, the administering of antioxidants alleviated the effect of the ROS buildup. In addition, flies that were modified to overproduce gut antioxidant enzymes were found to be immune to the damaging effects of sleep deprivation.

The research leaves some important questions unanswered. Says Kaplan Dor, "We still don't know why sleep loss causes ROS accumulation in the gut, and why this is lethal." He hypothesizes, "Sleep deprivation could directly affect the gut, but the trigger may also originate in the brain. Similarly, death could be due to damage in the gut or because high levels of ROS have systemic effects, or some combination of these."

The HMS researchers are now investigating the chemical pathways by which sleep-deprivation triggers the ROS buildup, and the means by which the ROS wreak cell havoc.

"We need to understand the biology of how sleep deprivation damages the body so that we can find ways to prevent this harm," says Rogulja.

Referring to the value of this study to humans, she notes,"So many of us are chronically sleep deprived. Even if we know staying up late every night is bad, we still do it. We believe we've identified a central issue that, when eliminated, allows for survival without sleep, at least in fruit flies."

Withdrawal symptoms from antidepressants can last over a year, new study finds

We must rethink the "chemical imbalance" theory of mental health.

Bottles of antidepressant pills named (L-R) Wellbutrin, Paxil, Fluoxetine and Lexapro are shown March 23, 2004 photographed in Miami, Florida.

Photo Illustration by Joe Raedle/Getty Images
Surprising Science
  • A new review found that withdrawal symptoms from antidepressants and antipsychotics can last for over a year.
  • Side effects from SSRIs, SNRIs, and antipsychotics last longer than benzodiazepines like Valium or Prozac.
  • The global antidepressant market is expected to reach $28.6 billion this year.
Keep reading Show less
Scroll down to load more…