It turns out spiders ’fly’ on magnoelectricity

Biologists at the University of Bristol demonstrate how the mysterious phenomenon of spider ballooning for great distances and at great heights works.

It’s been a longstanding mystery: Spiders have been seen hundreds of miles out to sea and thousands of feet up in the air. They are amazing creatures, but flight per se isn’t one of their skills. And yet: A spider climbs to the top of a branch, releases a fan of silk, and off it goes. It’s called spider “ballooning.”


Charles Darwin found the phenomenon puzzling when he saw a swarm land on the H.M.S. Beagle some 60 miles offshore.

“A beautiful day: but the wind has been steadily against us.— In the evening all the ropes were coated & fringed with Gossamer web — I caught some of the Aeronaut spiders which must have come at least 60 miles. How inexplicable is the cause which induces these small insects, as it now appears in both hemispheres, to undertake their aerial excursions.”

The obvious explanation might be that their web catches the breeze and carries them away, but this notion doesn’t quite fly. Spiders balloon only in very light winds of less than three meters per second and wind couldn’t pull out enough silk to explain how they travel so far and get up so high anyway. A 1939 aerial collection expedition of the U.S. Department of Agriculture sampled high-altitude insects—calling them “plankton of the air”—and found substantial numbers of Araneida as high as 5,000 feet above Tallulah, LA.

Another idea was that they were somehow leveraging the Earth’s electromagnetic charge, but that idea had never been studiously tested. Now two scientists from the University of Bristol, Erica L. Morley and Daniel Robert, have shown that spiders balloon by taking advantage of the Earth’s electrical field.

The electric field around a tree

It’s been known since early in the last century that there is always an active atmospheric potential gradient (APG). On days with unsettled weather, the APG may strengthen.

APG measured for 30 min periods across 3 days at the University of Bristol (Credit: Morley, et al)

If you have a grounded sharp object, such as a tree, rising into the APG, the electrical field, or “e-field,” around the tree can get quite charged. Close in around branch tips, sharp leaves, and needles, voltages can reach tens of kilovolts per meter.

Voltage scale bar, the e-field around an oak tree, the fields around its branch tips. (Credit: Morley, et al)

The experiments

Spidey senses tingle

Spiders have fine mechanosensory hairs called trichobothria that are hypersensitive to sound and air motion. Morley and Robert placed spiders in an enclosed plastic box, positioning them on strips of cardboard, and exposed them to voltages similar to what they might encounter in nature—the researchers saw the trichobothria respond, “It’s like when you rub a balloon and hold it up to your hairs,” Morley tells The Atlantic.


Trichobothria under a scanning electron microscope (Credit: Morley, et al)

Tiptoe

Just as interestingly, the spiders began to straighten their legs, raise their abdomens and release silk, called “tiptoeing,” when a voltage was present. The only time spiders tiptoe like this is just before they balloon.


Tiptoeing on a dandelion seed head (Credit: Michael Hutchinson)

Up and down

What one might consider final confirmation of the theory would that when an e-field was induced in this utterly windless environment, the spiders actually began ballooning. When it was switched off, they came down. The researchers could actually control spiders’ altitude with electricity.

(Credit: Morley, et al)

Wingless aviation

Morley and Robert conclude that the APG may serve three ballooning purposes:

  1. an indicator of meteorological conditions
  2. an informational trigger
  3. a physical driving force enabling ballooning.

They also note, “Several mechanistic questions now emerge, pertaining to the dielectric characteristics of ballooning silk and whether altitude control and navigation take place.” It may well be that spiders use both electricity and wind to balloon, with the APG getting them aloft, and wind currents allowing them to navigate.

Want more cool animal science? Brace yourself:


Related Articles

Human skeletal stem cells isolated in breakthrough discovery

It's a development that could one day lead to much better treatments for osteoporosis, joint damage, and bone fractures.

Image: Nissim Benvenisty
Surprising Science
  • Scientists have isolated skeletal stem cells in adult and fetal bones for the first time.
  • These cells could one day help treat damaged bone and cartilage.
  • The team was able to grow skeletal stem cells from cells found within liposuctioned fat.
Keep reading Show less

How exercise helps your gut bacteria

Gut bacteria play an important role in how you feel and think and how well your body fights off disease. New research shows that exercise can give your gut bacteria a boost.

National Institutes of Health
Surprising Science
  • Two studies from the University of Illinois show that gut bacteria can be changed by exercise alone.
  • Our understanding of how gut bacteria impacts our overall health is an emerging field, and this research sheds light on the many different ways exercise affects your body.
  • Exercising to improve your gut bacteria will prevent diseases and encourage brain health.
Keep reading Show less

Giving octopuses ecstasy reveals surprising link to humans

A groundbreaking new study shows that octopuses seemed to exhibit uncharacteristically social behavior when given MDMA, the psychedelic drug commonly known as ecstasy.

Image: damn_unique via Flickr
Surprising Science
  • Octopuses, like humans, have genes that seem to code for serotonin transporters.
  • Scientists gave MDMA to octopuses to see whether those genes translated into a binding site for serotonin, which regulates emotions and behavior in humans
  • Octopuses, which are typically asocial creatures, seem to get friendlier while on MDMA, suggesting humans have more in common with the strange invertebrates than previously thought
Keep reading Show less