In Space, Ice Flows Like Honey and Pops Like Champagne

Scientists discover that ice in space bubbles, pops, and flows.

Icy space
(NASA/JPL)

The first clue appeared in 2016, when researchers found that water, ammonia, and methanol ice — the kind found in interstellar clouds where stars form, and in comets — could contain a range of molecule types, including ribose, a precursor of RNA. One of the great mysteries surrounding the origin of life on earth is the question of where its life-starting RNA came from. Maybe this meant it could have come from space, but some were skeptical: Was the ribose found in the ice a natural occurrence, or just lab contamination? Now a new study of ice’s weird behavior under space-like conditions answers that question: Ribose happens.


(JOHN TEWELL)

The new study, from a team led by Shogo Tachibana of Hokkaido University, was published in the September 2017 issue of Science Advances. It presents their findings of what happens to ammonia/methanol ice when subjected to ultraviolet radiation — standing in for starlight — and sub-zero temperatures from ‒263° C to ‒258° C — standing in for space. What they found is a bit weird. Two thermal sweets spots at which the ice behaved unexpectedly:

Below -213° C, the ice was a brittle solid, but at -206°, it began to form bubbles. “We were so surprised when we first saw bubbling of ice at really low temperatures,” Tachibana tells ScienceNews. “It is like bubbling in champagne.”

The ice bubbles popping. (TACHIBANA, ET AL)

The researchers saw spikes in hydrogen readings as they irradiated the ice, suggesting the bubbles were made of hydrogen split away from the ice’s ammonia and methane molecules by the ultraviolet light to which the ice had been exposed.

Even more surprising, as the temperature was brought up to -185° C, something else happened: The bubbly ice semi-liquified, becoming oozy like frozen honey. This persisted up to -161° C, at which point it solidified again. The bubbles nonetheless persisted up to -123° C, at which point the ice turned crystalline. Seeing space-ice ice in this liquid-like state supports the possibility of chemical interactions occurring within in it.

(SHAWN DALL)

Cornelia Meinert was one of the authors of the earlier research that found ribose, and she sees the new study as evidence for what her team found, telling Science News that it strengthens her conclusion because “at this very low temperature, the small precursor molecules can actually react with each other. This is supporting the idea that all these organic molecules can form in the ice, and might also be present in comets.”

It may just be that life on earth began, in a sense, on chunks of ice spinning across the galaxies.

A historian identifies the worst year in human history

A Harvard professor's study discovers the worst year to be alive.

The Triumph of Death. 1562.

Credit: Pieter Bruegel the Elder. (Museo del Prado).
Politics & Current Affairs
  • Harvard professor Michael McCormick argues the worst year to be alive was 536 AD.
  • The year was terrible due to cataclysmic eruptions that blocked out the sun and the spread of the plague.
  • 536 ushered in the coldest decade in thousands of years and started a century of economic devastation.
Keep reading Show less

Humanity's most distant space probe captures a strange sound

A new paper reveals that the Voyager 1 spacecraft detected a constant hum coming from outside our Solar System.

Voyager 1 in interstellar space.

Credit: NASA / JPL - Caltech.
Surprising Science
  • Voyager 1, humankind's most distant space probe, detected an unusual "hum" in the data from interstellar space.
  • The noise is likely produced by interstellar gas.
  • Further investigation may reveal the hum's exact origins.
  • Keep reading Show less

    For $50, convert your phone into a powerful chemical, pathogen detector

    A team of scientists managed to install onto a smartphone a spectrometer that's capable of identifying specific molecules — with cheap parts you can buy online.

    Photo of the constructed system: top view (a) and side view (b).

    Technology & Innovation
    • Spectroscopy provides a non-invasive way to study the chemical composition of matter.
    • These techniques analyze the unique ways light interacts with certain materials.
    • If spectrometers become a common feature of smartphones, it could someday potentially allow anyone to identify pathogens, detect impurities in food, and verify the authenticity of valuable minerals.
    Keep reading Show less
    Quantcast