Get smarter, faster. Subscribe to our daily newsletter.
Cornell University program aims to end world hunger in 10 years
Can we end world hunger by 2030? Thanks to a new program, the data for it is all there.

Children being given food at an aid camp in Rwanda.
- An international team of researchers has released a series of studies geared towards ending world hunger.
- They are thought to be some of the first people to use Evidence Synthesis for agricultural data.
- Their ideas could increase food production and lower poverty for a low cost, regardless if they meet their lofty goal.
World Hunger is one of those problems that everybody seems to want to solve but that just won't go away. In 2020, nearly 700 million people suffered from hunger at some point.
This is despite years of both lip service to the idea of feeding everybody and sincere attempts by people, governments, and organizations with deep pockets to solve the issue. The number of people going hungry has been declining in recent years, but getting those last few hundred million fed has proven difficult.
A new project offers potential solutions that could finally feed the world. Ceres2030, named for the Roman Goddess of Agriculture, aims to help the world reach the United Nations' Sustainable Development Goal No. 2 and end world hunger in ten years using evidence-based, targeted investments in various areas.
Who are these people?
Headquartered at Cornell University, Ceres2030 is a collective project involving people from around the world. It is financed in part by the Bill and Melinda Gates Foundation and the German Federal Ministry of Economic Cooperation and Development.
The enterprise includes more than 70 researchers from 23 different countries with the best information available on what works to reduce hunger. These researchers are divided into eight teams, each covering a separate subject area. Each group reviews the literature and combines it into a general review which can be used to inform policy decisions.
There exists a technique, frequently used in medical science and other health-related fields, called "Evidence Synthesis." It aims to review all of the relevant literature on a topic in a way that outlines where the scientific consensus is, clearly shows where gaps in the research are, and provides a context for new discoveries. Before now, it was rarely, if ever, used to review information on agriculture.
Using AI to sort through the endless data, the project considered half a million previously published reports, studies, and articles searching for information. By reviewing the summaries of these documents, the machine was able to synthesize the findings. The humans involved with the project then took these findings and authored ten papers summarizing them to allow readers to draw broad conclusions on what the evidence suggests would effectively improve crop yields and farmer incomes.
This might strike you as a high tech version of an intensive review of the literature. However, it is essential to remember that many important works can sit unread for years at a time. Some of the studies reviewed may have been read by no more than a handful of people, and they certainly never reached the attention of farmers or officials in a place to apply their findings. By having computers go through this information, the Ceres team was able to create the most comprehensive summation of the data possible.
If humans alone were trying to do this task, they'd probably still be reviewing the data in 2030.
What do they want us to do?
The analysis shows that many studies agree on the benefits of a few, straightforward initiatives. Among these findings are game-changing ideas like:
Farmer's organizations help their members increase both their incomes and crop yields. Membership was linked with higher incomes in nearly 60 percent of studies, and benefits to crop yields were demonstrated in a quarter. These organizations play a part in helping farmers adopt modern techniques, tools, and crop types to help implement other policy suggestions. Assisting people in joining them can have a tremendous impact on their lives.
In the middle and lower-income countries, nearly three-quarters of small farmers live and work in areas where water is scarce. The vast majority of these farms do not have an irrigation system to speak of. Output and income could both be increased by addressing this infrastructure issue. Helping farmers switch to more climate change and drought-resistant crops and introduce new and improved livestock sources, both as sources of labor and food, can improve productivity and keep people resilient in the face of climate change.
These are just a handful of the ideas Ceres2030 endorse in their press releases. In each case, they point to piles of data showing the effectiveness of these ideas in increasing incomes, crop yields, and small producers' resiliency in the face of threats such as climate change. It could cost roughly 14 billion dollars more a year in aid to do it, about twice as much as we are spending on the problem now, alongside new investments by the governments of nations most plagued by hunger.
All of these ideas can be implemented tomorrow; many places have already done these things. It is only a matter of deciding to do it. Some of the findings and ideas are even simpler than these, including discovering that we waste a lot of food and that simple solutions can prevent much of it.
More information on their ideas and how they came to their conclusions can be found on the Ceres2030 website.
Will this work?
It might.
The findings and recommendations are based on extensive research, histories of successful implementation elsewhere, and a sincere desire to use evidence to help people. Following them would lead to better-informed farmers making more money while sustainably growing more food. The recommendations are neither one-size-fits-all, nor are they overly specific to the point where they cannot be generalized.
There are also plenty of reasons to be pessimistic. A study published this year in Nature argues that we will not be able to end world hunger by 2030. It takes the stance that some countries with endemic malnourishment are unlikely to reach their development targets for 2025, let alone the more ambitious goals for 2030.
The costs of not at least making progress on this front are very high. Without progress, an additional 100 million people could end up both hungry and mired in extreme poverty by the end of the decade, according to an estimate by the United Nations' Food and Agriculture Organization. The COVID-19 pandemic has caused some regression already, as economic difficulty leads to empty bellies.
The entirety of human history has been marked by attempts to produce enough food for everybody, and it is only recently (relatively speaking) that we've managed to do that. Today, we grow enough food for 10 billion people but seem to have difficulty getting it to the people who need it most. The suggestions of the Ceres2030 team, if followed, offer the chance to finally rid the world of hunger and famine for less than $50 per currently malnourished person per year.
It's only a question of doing it. Let's see if we want to.
- A Vegetarian World by 2050? - Big Think ›
- Eight ways to halt a global food crisis ›
- Could Eating Bugs Solve World Hunger? - Big Think ›
How tiny bioelectronic implants may someday replace pharmaceutical drugs
Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.
Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.
- Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
- Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
- Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
The nervous system’s ancient reflexes
<p>You accidentally place your hand on a hot stove. Almost instantaneously, your hand withdraws.</p><p>What triggered your hand to move? The answer is <em>not</em> that you consciously decided the stove was hot and you should move your hand. Rather, it was a reflex: Skin receptors on your hand sent nerve impulses to the spinal cord, which ultimately sent back motor neurons that caused your hand to move away. This all occurred before your "conscious brain" realized what happened.</p><p>Similarly, the nervous system has reflexes that protect individual cells in the body.</p><p>"The nervous system evolved because we need to respond to stimuli in the environment," said Dr. Tracey. "Neural signals don't come from the brain down first. Instead, when something happens in the environment, our peripheral nervous system senses it and sends a signal to the central nervous system, which comprises the brain and spinal cord. And then the nervous system responds to correct the problem."</p><p>So, what if scientists could "hack" into the nervous system, manipulating the electrical activity in the nervous system to control molecular processes and produce desirable outcomes? That's the chief goal of bioelectronic medicine.</p><p>"There are billions of neurons in the body that interact with almost every cell in the body, and at each of those nerve endings, molecular signals control molecular mechanisms that can be defined and mapped, and potentially put under control," Dr. Tracey said in a <a href="https://www.youtube.com/watch?v=AJH9KsMKi5M" target="_blank">TED Talk</a>.</p><p>"Many of these mechanisms are also involved in important diseases, like cancer, Alzheimer's, diabetes, hypertension and shock. It's very plausible that finding neural signals to control those mechanisms will hold promises for devices replacing some of today's medication for those diseases."</p><p>How can scientists hack the nervous system? For years, researchers in the field of bioelectronic medicine have zeroed in on the longest cranial nerve in the body: the vagus nerve.</p>The vagus nerve
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYyOTM5OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0NTIwNzk0NX0.UCy-3UNpomb3DQZMhyOw_SQG4ThwACXW_rMnc9mLAe8/img.jpg?width=1245&coordinates=0%2C0%2C0%2C0&height=700" id="09add" class="rm-shortcode" data-rm-shortcode-id="f38dbfbbfe470ad85a3b023dd5083557" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />Electrical signals, seen here in a synapse, travel along the vagus nerve to trigger an inflammatory response.
Credit: Adobe Stock via solvod
<p>The vagus nerve ("vagus" meaning "wandering" in Latin) comprises two nerve branches that stretch from the brainstem down to the chest and abdomen, where nerve fibers connect to organs. Electrical signals constantly travel up and down the vagus nerve, facilitating communication between the brain and other parts of the body.</p><p>One aspect of this back-and-forth communication is inflammation. When the immune system detects injury or attack, it automatically triggers an inflammatory response, which helps heal injuries and fend off invaders. But when not deployed properly, inflammation can become excessive, exacerbating the original problem and potentially contributing to diseases.</p><p>In 2002, Dr. Tracey and his colleagues discovered that the nervous system plays a key role in monitoring and modifying inflammation. This occurs through a process called the <a href="https://www.nature.com/articles/nature01321" target="_blank" rel="noopener noreferrer">inflammatory reflex</a>. In simple terms, it works like this: When the nervous system detects inflammatory stimuli, it reflexively (and subconsciously) deploys electrical signals through the vagus nerve that trigger anti-inflammatory molecular processes.</p><p>In rodent experiments, Dr. Tracey and his colleagues observed that electrical signals traveling through the vagus nerve control TNF, a protein that, in excess, causes inflammation. These electrical signals travel through the vagus nerve to the spleen. There, electrical signals are converted to chemical signals, triggering a molecular process that ultimately makes TNF, which exacerbates conditions like rheumatoid arthritis.</p><p>The incredible chain reaction of the inflammatory reflex was observed by Dr. Tracey and his colleagues in greater detail through rodent experiments. When inflammatory stimuli are detected, the nervous system sends electrical signals that travel through the vagus nerve to the spleen. There, the electrical signals are converted to chemical signals, which trigger the spleen to create a white blood cell called a T cell, which then creates a neurotransmitter called acetylcholine. The acetylcholine interacts with macrophages, which are a specific type of white blood cell that creates TNF, a protein that, in excess, causes inflammation. At that point, the acetylcholine triggers the macrophages to stop overproducing TNF – or inflammation.</p><p>Experiments showed that when a specific part of the body is inflamed, specific fibers within the vagus nerve start firing. Dr. Tracey and his colleagues were able to map these relationships. More importantly, they were able to stimulate specific parts of the vagus nerve to "shut off" inflammation.</p><p>What's more, clinical trials show that vagus nerve stimulation not only "shuts off" inflammation, but also triggers the production of cells that promote healing.</p><p>"In animal experiments, we understand how this works," Dr. Tracey said. "And now we have clinical trials showing that the human response is what's predicted by the lab experiments. Many scientific thresholds have been crossed in the clinic and the lab. We're literally at the point of regulatory steps and stages, and then marketing and distribution before this idea takes off."<br></p>The future of bioelectronic medicine
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYxMDYxMy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjQwOTExNH0.uBY1TnEs_kv9Dal7zmA_i9L7T0wnIuf9gGtdRXcNNxo/img.jpg?width=980" id="8b5b2" class="rm-shortcode" data-rm-shortcode-id="c005e615e5f23c2817483862354d2cc4" data-rm-shortcode-name="rebelmouse-image" data-width="2000" data-height="1125" />Vagus nerve stimulation can already treat Crohn's disease and other inflammatory diseases. In the future, it may also be used to treat cancer, diabetes, and depression.
Credit: Adobe Stock via Maridav
<p>Vagus nerve stimulation is currently awaiting approval by the US Food and Drug Administration, but so far, it's proven safe and effective in clinical trials on humans. Dr. Tracey said vagus nerve stimulation could become a common treatment for a wide range of diseases, including cancer, Alzheimer's, diabetes, hypertension, shock, depression and diabetes.</p><p>"To the extent that inflammation is the problem in the disease, then stopping inflammation or suppressing the inflammation with vagus nerve stimulation or bioelectronic approaches will be beneficial and therapeutic," he said.</p><p>Receiving vagus nerve stimulation would require having an electronic device, about the size of lima bean, surgically implanted in your neck during a 30-minute procedure. A couple of weeks later, you'd visit, say, your rheumatologist, who would activate the device and determine the right dosage. The stimulation would take a few minutes each day, and it'd likely be unnoticeable.</p><p>But the most revolutionary aspect of bioelectronic medicine, according to Dr. Tracey, is that approaches like vagus nerve stimulation wouldn't come with harmful and potentially deadly side effects, as many pharmaceutical drugs currently do.</p><p>"A device on a nerve is not going to have systemic side effects on the body like taking a steroid does," Dr. Tracey said. "It's a powerful concept that, frankly, scientists are quite accepting of—it's actually quite amazing. But the idea of adopting this into practice is going to take another 10 or 20 years, because it's hard for physicians, who've spent their lives writing prescriptions for pills or injections, that a computer chip can replace the drug."</p><p>But patients could also play a role in advancing bioelectronic medicine.</p><p>"There's a huge demand in this patient cohort for something better than they're taking now," Dr. Tracey said. "Patients don't want to take a drug with a black-box warning, costs $100,000 a year and works half the time."</p><p>Michael Dowling, president and CEO of Northwell Health, elaborated:</p><p>"Why would patients pursue a drug regimen when they could opt for a few electronic pulses? Is it possible that treatments like this, pulses through electronic devices, could replace some drugs in the coming years as preferred treatments? Tracey believes it is, and that is perhaps why the pharmaceutical industry closely follows his work."</p><p>Over the long term, bioelectronic approaches are unlikely to completely replace pharmaceutical drugs, but they could replace many, or at least be used as supplemental treatments.</p><p>Dr. Tracey is optimistic about the future of the field.</p><p>"It's going to spawn a huge new industry that will rival the pharmaceutical industry in the next 50 years," he said. "This is no longer just a startup industry. [...] It's going to be very interesting to see the explosive growth that's going to occur."</p>"Forced empathy" is a powerful negotiation tool. Here's how to do it.
Master negotiator Chris Voss breaks down how to get what you want during negotiations.
- Former FBI negotiator Chris Voss explains how forced empathy is a powerful negotiating tactic.
- The key is starting a sentence with "What" or "How," causing the other person to look at the situation through your eyes.
- What appears to signal weakness is turned into a strength when using this tactic.
Choose your battles
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzQ1OTQ2NC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNDgwMTA5OH0.BP2vZe7gZdiaE_KA5Otr4pzYmAqpFQUGSRSVr28Bipo/img.jpg?width=1245&coordinates=0%2C90%2C0%2C32&height=700" id="46a4d" class="rm-shortcode" data-rm-shortcode-id="912a183929345986b45c3455a6f369f5" data-rm-shortcode-name="rebelmouse-image" alt="Aikido Morihei Ueshiba" data-width="1245" data-height="700" />Aikido Morihei Ueshiba (1883 - 1969, standing, centre left), founder of the Japanese martial art of aikido, demonstrating his art with a follower, at the opening ceremony of the newly-opened aikido headquarters, Hombu Dojo, in Shinjuku, Tokyo, 1967.
Credit: Keystone/Hulton Archive/Getty Images
<p>Online debates often amount to little more than frustrated individuals pulling out their hair. In his book, <a href="https://www.amazon.com/dp/0062339346?tag=bigthink00-20&linkCode=ogi&th=1&psc=1" target="_blank">"Against Empathy,"</a> Yale psychology professor Paul Bloom writes that effective altruists are able to focus on what really matters in everyday life.</p><p>For example, he compares politics to sports. Rooting for your favorite team isn't based in rationality. If you're a Red Sox fan, Yankees stats don't matter. You just want to destroy them. This, he believes, is how most people treat politics. "They don't care about truth because, for them, it's not really about truth."</p><p>Bloom writes that if his son believed our ancestors rode dinosaurs, it would horrify him, but "I can't think of a view that matters less for everyday life." We have to strive for rationality when the stakes are high. When involved in real decision-making processes that will affect their life, people are better able to express ideas and make arguments, and are more receptive to opposing ideas. </p><p>Because we "become inured to problems that seem unrelenting," it's imperative to make the problem seem immediate. As Voss says, giving the other side "the illusion of control" is one way of accomplishing this, as it forces them to take action. When people feel out of control, negotiations are impossible. People dig their heels in and refuse to budge. </p><p>What seems to be weakness is actually a strength. To borrow another martial arts metaphor, negotiations are like aikido: using your opponent's force against them while also protecting them from injury. Forcing empathy is one way to accomplish this task. You may get more than you ask for without the other side ever realizing they surrendered anything.</p><p>--</p><p><em>Stay in touch with Derek on <a href="http://www.twitter.com/derekberes" target="_blank">Twitter</a>, <a href="https://www.facebook.com/DerekBeresdotcom" target="_blank">Facebook</a> and <a href="https://derekberes.substack.com/" target="_blank">Substack</a>. His next book is</em> "<em>Hero's Dose: The Case For Psychedelics in Ritual and Therapy."</em></p>3 Tips on Negotiations, with FBI Negotiator Chris Voss
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="b86d518e9f0c9f9d7a7c686e07798152"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/-FLlBchonwM?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Toward a disease-sniffing device that rivals a dog’s nose
Trained dogs can detect cancer and other diseases by smell. Could a device do the same?
Numerous studies have shown that trained dogs can detect many kinds of disease — including lung, breast, ovarian, bladder, and prostate cancers, and possibly Covid-19 — simply through smell. In some cases, involving prostate cancer for example, the dogs had a 99 percent success rate in detecting the disease by sniffing patients' urine samples.
Scientists are building Earth’s virtual twin
Their goal is a digital model of the Earth that depicts climate change in all of its complexity.
- The European Union envisions an ambitious digital twin of the Earth to simulate climate change.
- The project is a unique collaboration between Earth science and computer experts.
- The digital twin will allow policymakers to audition expansive geoengineering projects meant to address climate change.
Who are the planet-builders?
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTY5MDMzMS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzOTA0NzY2MH0.yG8KyIXYBtiAQB0_9KJLPFhvOj2ZvpBy04YPffMIEJM/img.jpg?width=980" id="4548e" class="rm-shortcode" data-rm-shortcode-id="61d5c1e9765e8d98ef2dab9cb2bf01a6" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="833" />Credit: Henry & Co./Unsplash/leberus/Adobe Stock/Big Think
<p>Destination Earth is the brainchild of the European Centre for Medium-Range Weather Forecasts (ECMWF), the European Space Agency (ESA), and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT).</p><p>The project manager and lead author of the study is <a href="https://www.ecmwf.int/en/about/who-we-are/staff-profiles/peter-bauer" target="_blank">Peter Bauer</a> of the ECMWF. His contribution to the project has to do with the climate science aspects of Earth's virtual twin. The computer side of things will be the domain of <a href="https://htor.inf.ethz.ch" target="_blank" rel="noopener noreferrer">Torsten Hoefler</a> of ETH Zurich and <a href="https://www.simonsfoundation.org/people/thomas-schulthess/" target="_blank">Thomas Schulthess</a> of the Swiss National Supercomputing Centre (CSCS).</p>Watching time go by on the digital Earth
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTY5MDMzNi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNTIyNzQ5MX0.NrXxzMuA8NcrcSIaCivN3zRlsc-KgVpYiecDlLKN4Mw/img.jpg?width=980" id="b1bcf" class="rm-shortcode" data-rm-shortcode-id="aff8d7380cd18b8ee15a8f772d83a7a8" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="988" />Credit: Logan Armstrong/Unsplash
<p>The basic idea of the digital twin is that it will allow scientists to observe climate change in motion as it progresses. "If you are planning a two-meter high dike in The Netherlands, for example," says Bauer in an ETH press release, "I can run through the data in my digital twin and check whether the dike will in all likelihood still protect against expected extreme events in 2050."</p><p>Most important will be trying out geoengineering ideas and seeing how they track over time. The press release specifically notes the value the twin will bring to "strategic planning of fresh water and food supplies or wind farms and solar plants." </p>Aging models and AI
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTY5MDM0Mi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY2NjM3Njc3Mn0.7Dm8rcv_bcHSvKlxIvaQ3wu3pC3wjKbWeScQ_nQyLlA/img.jpg?width=980" id="be2db" class="rm-shortcode" data-rm-shortcode-id="8dacb34d559e79cded0443dbd88c84d3" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="720" />Credit: ECMWF
<p>Capturing the subtleties and intricacies of our planet faithfully in order to model plauisble outcomes is going to require an equally complex computer model. Construction of the digital Earth begins with the refinement of current weather models, with a goal of eventually being able to simulate conditions in as small an area as a kilometer. Current models are not nearly as fine-grained, a shortcoming that hampers their ability to make accurate predictions given that the large weather systems are really aggregates of many smaller meteorological systems influencing each other.</p><p>The authors of the paper assert that today's meteorological models fall far short of what's possible, their development having basically become stuck in place about a decade ago. They say that current models take advantage of only about 5 percent of today's available processing power. The solution is the tight collaboration between Earth scientists and computer scientists at the heart of Destination Earth to develop cutting-edge models.</p><p>The twin will also be able to take advantage of rapidly advancing developments in artificial intelligence. Obviously, AI is very good at detecting patterns in large amounts of data. The study anticipates multiple roles for AI here, including the promotion of operational efficiency with new ways of accurately representing physical processes, as well as the development of novel data-compression strategies.</p>A massive endeavor
<p> The team will feed the twin massive amounts of weather data—as well as data regarding human activity—to get the digital planet going and then continually as new data emerge, making the model more and more complex and more and more accurate. </p><p> At full scale, a digital twin of an entire planet would require a suitably massive amount of horsepower. The authors of the study propose a system with 20,000 <a href="https://en.wikipedia.org/wiki/Graphics_processing_unit" target="_blank">GPUs</a> that will require 20 megawatts to run. And since the ultimate goal is to help the Earth and not make things worse, they say they'd like to site its digital twin in an area power from a CO<sup>2</sup>-netural electrical source. </p>New research shows that bullies are often friends
Remedies must honor the complex social dynamics of adolescence.
