The mystery of how birds navigate is over, and the answer is so amazing

It’s the first time magnetoreception has been discovered in animals, researchers claim.

Migrating geese.
Migrating geese. Credit: Getty Images.

One of the longest running mysteries is exactly how birds navigate when they fly south for the winter or back come spring. For forty years, scientists have known that birds can somehow sense the magnetic field and navigate by it. But they’ve been unable to figure out how, until now. Two teams have recently identified that birds can actually visualize the magnetosphere.


One study comes out of the University of Oldenburg, in Germany, where researchers studied European robins. The other is from Lund University, in Sweden, where scientists examined zebra finches. For a long time, the prevailing theory was that cells rich in iron in bird’s beaks aided their navigation. Then, in the late 1960s, Klaus Schulten of the University of Illinois proposed that migratory animals, including birds, must contain a certain molecule in their eyes or brains that responds to the magnetic field.

Evidence since has mounted towards Schulten’s hypothesis. Now it seems, these two teams have made it the prevailing theory. The Swedish study was published in the Journal of the Royal Society Interface, while the German one was published in Current Biology. Both studies focus on a class of proteins known as cryptochromes.

Certain molecules in birds’ eyes help them to see the magnetic field and navigate by it. Credit: Getty Images.

Each team discovered a particular type of cryptochrome protein in birds’ retinas known as Cry4, which is sensitive to blue light—including that given off by the Earth’s magnetic field. Both plants and animals are known to contain photoreceptive cells that respond to blue light, which are necessary for circadian rhythms. Yet, this is the first time magnetoreception has been discovered in animals.

A bird’s visual magnetic detection cells rely on quantum coherence. It’s interactions with the quantum field that allows migratory birds to navigate, according to biologist Atticus Pinzon-Rodriguez, at Lund University. Recent research indicated three possible cryptochromes, Cry1, Cry2, and Cry 4, may be involved. Scientists in both teams looked at the gene expression associated with each protein.

This is the first time magnetoreception has been discovered in animals. But how is the magnetic field perceived by birds? Credit: Getty Images.

They found that Cry1 and Cry2 expression fluctuated throughout the day—as they’re both tied to circadian rhythms, Cry 4 didn’t. It stayed constant. As this gene's protein is being consistently produced, researchers believe it’s tied to detecting the magnetic field. Consider that birds navigate by it day or night. There are other indicators too. European robins for instance, were shown to have increased Cry4 expression during the migratory season, something that wasn’t found in chickens.

Both teams, in addition to looking at gene expression, found that the area in the birds’ retinas where Cry4 is located receives a lot of light. Though the evidence is compelling and the theory strong, more research must be done, particularly in bird species with latent Cry4, in order to confirm these results. And beyond that, scientists if they prove the theory true, will then have to discern exactly how birds perceive the magnetic field.

To learn more about the science behind migratory animals, click here:

‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

Discovery of two giant radio galaxies hints at more to come

The newly discovered galaxies are 62x bigger than the Milky Way.

This image shows most of the giant radio galaxy MGTC J095959.63+024608.6; in red is the radio light from the giant radio galaxy, as seen by MeerKAT. It is placed ontop of a typical image of the night sky.

I. Heywood, University of Oxford / Rhodes University / South African Radio Astronomy Observatory / CC BY 4.0.
Surprising Science
  • Two recently discovered radio galaxies are among the largest objects in the cosmos.
  • The discovery implies that radio galaxies are more common than previously thought.
  • The discovery was made while creating a radio map of the sky with a small part of a new radio array.
Keep reading Show less

The secret life of maladaptive daydreaming

Daydreaming can be a pleasant pastime, but people who suffer from maladaptive daydreamers are trapped by their fantasies.

(Photo: Wikimedia Commons)
Mind & Brain
  • Maladaptive daydreamers can experience intricate, vivid daydreams for hours a day.
  • This addiction can result in disassociation from vital life tasks and relationships.
  • Psychologists, online communities, and social pipelines are spreading awareness and hope for many.
  • Keep reading Show less
    Mind & Brain

    Why it's important to admit when you're wrong

    Psychologists point to specific reasons that make it hard for us to admit our wrongdoing.

    Scroll down to load more…
    Quantcast