The mystery of how birds navigate is over, and the answer is so amazing

It’s the first time magnetoreception has been discovered in animals, researchers claim.

Migrating geese.
Migrating geese. Credit: Getty Images.

One of the longest running mysteries is exactly how birds navigate when they fly south for the winter or back come spring. For forty years, scientists have known that birds can somehow sense the magnetic field and navigate by it. But they’ve been unable to figure out how, until now. Two teams have recently identified that birds can actually visualize the magnetosphere.


One study comes out of the University of Oldenburg, in Germany, where researchers studied European robins. The other is from Lund University, in Sweden, where scientists examined zebra finches. For a long time, the prevailing theory was that cells rich in iron in bird’s beaks aided their navigation. Then, in the late 1960s, Klaus Schulten of the University of Illinois proposed that migratory animals, including birds, must contain a certain molecule in their eyes or brains that responds to the magnetic field.

Evidence since has mounted towards Schulten’s hypothesis. Now it seems, these two teams have made it the prevailing theory. The Swedish study was published in the Journal of the Royal Society Interface, while the German one was published in Current Biology. Both studies focus on a class of proteins known as cryptochromes.

Certain molecules in birds’ eyes help them to see the magnetic field and navigate by it. Credit: Getty Images.

Each team discovered a particular type of cryptochrome protein in birds’ retinas known as Cry4, which is sensitive to blue light—including that given off by the Earth’s magnetic field. Both plants and animals are known to contain photoreceptive cells that respond to blue light, which are necessary for circadian rhythms. Yet, this is the first time magnetoreception has been discovered in animals.

A bird’s visual magnetic detection cells rely on quantum coherence. It’s interactions with the quantum field that allows migratory birds to navigate, according to biologist Atticus Pinzon-Rodriguez, at Lund University. Recent research indicated three possible cryptochromes, Cry1, Cry2, and Cry 4, may be involved. Scientists in both teams looked at the gene expression associated with each protein.

This is the first time magnetoreception has been discovered in animals. But how is the magnetic field perceived by birds? Credit: Getty Images.

They found that Cry1 and Cry2 expression fluctuated throughout the day—as they’re both tied to circadian rhythms, Cry 4 didn’t. It stayed constant. As this gene's protein is being consistently produced, researchers believe it’s tied to detecting the magnetic field. Consider that birds navigate by it day or night. There are other indicators too. European robins for instance, were shown to have increased Cry4 expression during the migratory season, something that wasn’t found in chickens.

Both teams, in addition to looking at gene expression, found that the area in the birds’ retinas where Cry4 is located receives a lot of light. Though the evidence is compelling and the theory strong, more research must be done, particularly in bird species with latent Cry4, in order to confirm these results. And beyond that, scientists if they prove the theory true, will then have to discern exactly how birds perceive the magnetic field.

To learn more about the science behind migratory animals, click here:

Marijuana addiction has risen in places where it's legal

While legalization has benefits, a new study suggests it may have one big drawback.

BSIP/Universal Images Group via Getty Images
Politics & Current Affairs
  • A new study finds that rates of marijuana use and addiction have gone up in states that have recently legalized the drug.
  • The problem was most severe for those over age of 26, with cases of addiction rising by a third.
  • The findings complicate the debate around legalization.
Keep reading Show less

The strange case of the dead-but-not-dead Tibetan monks

For some reason, the bodies of deceased monks stay "fresh" for a long time.

Credit: MICHEL/Adobe Stock
Surprising Science
  • The bodies of some Tibetan monks remain "fresh" after what appears to be their death.
  • Their fellow monks say they're not dead yet but in a deep, final meditative state called "thukdam."
  • Science has not found any evidence of lingering EEG activity after death in thukdam monks.
  • Keep reading Show less

    What do Olympic gymnasts and star-forming clouds have in common?

    When Olympic athletes perform dazzling feats of athletic prowess, they are using the same principles of physics that gave birth to stars and planets.

    Credit: sportpoint via Adobe Stock
    13-8
    • Much of the beauty of gymnastics comes from the physics principle called the conservation of angular momentum.
    • Conservation of angular momentum tells us that when a spinning object changes how its matter is distributed, it changes its rate of spin.
    • Conservation of angular momentum links the formation of planets in star-forming clouds to the beauty of a gymnast's spinning dismount from the uneven bars.
    Keep reading Show less
    Culture & Religion

    Of spies and wars: the secret history of tea

    How the British obsession with tea triggered wars, led to bizarre espionage, and changed the world — many times.

    Quantcast