The mystery of how birds navigate is over, and the answer is so amazing

It’s the first time magnetoreception has been discovered in animals, researchers claim.

Migrating geese.
Migrating geese. Credit: Getty Images.

One of the longest running mysteries is exactly how birds navigate when they fly south for the winter or back come spring. For forty years, scientists have known that birds can somehow sense the magnetic field and navigate by it. But they’ve been unable to figure out how, until now. Two teams have recently identified that birds can actually visualize the magnetosphere.


One study comes out of the University of Oldenburg, in Germany, where researchers studied European robins. The other is from Lund University, in Sweden, where scientists examined zebra finches. For a long time, the prevailing theory was that cells rich in iron in bird’s beaks aided their navigation. Then, in the late 1960s, Klaus Schulten of the University of Illinois proposed that migratory animals, including birds, must contain a certain molecule in their eyes or brains that responds to the magnetic field.

Evidence since has mounted towards Schulten’s hypothesis. Now it seems, these two teams have made it the prevailing theory. The Swedish study was published in the Journal of the Royal Society Interface, while the German one was published in Current Biology. Both studies focus on a class of proteins known as cryptochromes.

Certain molecules in birds’ eyes help them to see the magnetic field and navigate by it. Credit: Getty Images.

Each team discovered a particular type of cryptochrome protein in birds’ retinas known as Cry4, which is sensitive to blue light—including that given off by the Earth’s magnetic field. Both plants and animals are known to contain photoreceptive cells that respond to blue light, which are necessary for circadian rhythms. Yet, this is the first time magnetoreception has been discovered in animals.

A bird’s visual magnetic detection cells rely on quantum coherence. It’s interactions with the quantum field that allows migratory birds to navigate, according to biologist Atticus Pinzon-Rodriguez, at Lund University. Recent research indicated three possible cryptochromes, Cry1, Cry2, and Cry 4, may be involved. Scientists in both teams looked at the gene expression associated with each protein.

This is the first time magnetoreception has been discovered in animals. But how is the magnetic field perceived by birds? Credit: Getty Images.

They found that Cry1 and Cry2 expression fluctuated throughout the day—as they’re both tied to circadian rhythms, Cry 4 didn’t. It stayed constant. As this gene's protein is being consistently produced, researchers believe it’s tied to detecting the magnetic field. Consider that birds navigate by it day or night. There are other indicators too. European robins for instance, were shown to have increased Cry4 expression during the migratory season, something that wasn’t found in chickens.

Both teams, in addition to looking at gene expression, found that the area in the birds’ retinas where Cry4 is located receives a lot of light. Though the evidence is compelling and the theory strong, more research must be done, particularly in bird species with latent Cry4, in order to confirm these results. And beyond that, scientists if they prove the theory true, will then have to discern exactly how birds perceive the magnetic field.

To learn more about the science behind migratory animals, click here:

What is the purpose of universities?

For centuries, universities have advanced humanity toward truth. Professor Jonathan Haidt speaks to why college campuses are suddenly heading in the opposite direction.

Left: Professor Jonathan Haidt. Right: Artistotle.

Credit: Institute for Humane Studies, and Adobe Stock
Sponsored by the Institute for Humane Studies
  • In a lecture at UCCS, NYU professor Jonathan Haidt considers the 'telos' or purpose of universities: To discover truth.
  • Universities that prioritize the emotional comfort of students over the pursuit of truth fail to deliver on that purpose, at a great societal cost.
  • To make that point, Haidt quotes CNN contributor Van Jones: "I don't want you to be safe ideologically. I don't want you to be safe emotionally. I want you to be strong—that's different."
Keep reading Show less

Octopus-like creatures inhabit Jupiter’s moon, claims space scientist

A leading British space scientist thinks there is life under the ice sheets of Europa.

Jupiter's moon Europa has a huge ocean beneath its sheets of ice.

Credit: NASA/JPL-Caltech/SETI Institute
Surprising Science
  • A British scientist named Professor Monica Grady recently came out in support of extraterrestrial life on Europa.
  • Europa, the sixth largest moon in the solar system, may have favorable conditions for life under its miles of ice.
  • The moon is one of Jupiter's 79.
Keep reading Show less

From NASA to your table: A history of food from thin air

A fairly old idea, but a really good one, is about to hit the store shelves.

Credit: Brian McGowan/Unsplash/mipan/Adobe Stock/Big Think
Technology & Innovation
  • The idea of growing food from CO2 dates back to NASA 50 years ago.
  • Two companies are bringing high-quality, CO2-derived protein to market.
  • CO2-based foods provide an environmentally benign way of producing the protein we need to live.
Keep reading Show less

Can you step in the same river twice? Wittgenstein vs. Heraclitus

Imagine Heraclitus spending an afternoon down by the river...

Photo by Matt Seymour on Unsplash
Culture & Religion
'I am not a religious man,' the philosopher Ludwig Wittgenstein once said to a friend, 'but I cannot help seeing every problem from a religious point of view.'
Keep reading Show less
Surprising Science

Cancer cells hibernate to survive chemotherapy, finds study

Researchers discover that cancer cells go into hibernation to avoid chemotherapy effects.

Scroll down to load more…
Quantcast