Why we need to praise kids' teachability — not just their ability

In the fight between talent and hard work, hard work usually wins.

School
Photo by Santi Vedrí on Unsplash
  • Our education system often caters to identifying and supporting gifted children.
  • However, an excessive focus on giftedness may not be the best approach for educators.
  • Instead, we may want to emphasize the role of growth and teachability in future success.


In Western societies, we like to put people on pedestals. In a culture that celebrates independence, merit, and personal responsibility, our favorite figures are those that seem to simply be cut from better stuff than the rest of us. Characters like Albert Einstein, Beethoven, Elon Musk, Bill Gates, and others are apparently superhuman, and we tend to revere them as such.

Soon after Alfred Binet and Theodore Simon developed the precursor to the IQ test, educators began applying these tests to school children, eager to identify which members of the classroom belonged to the cream of the crop and which were merely average.

This began a veritable obsession with the finding and encouraging of gifted children in our schools. The worst thing in the world, it seemed, would be to let a gifted child's intellectual capacity go to waste for not giving them the opportunity to demonstrate their giftedness. Probably, there was also the innate attraction one has for intellectual titans; imagine the bragging rights if you got to teach Bill Gates in elementary school.

But this attitude has gradually been shifting, and with it have come new ideas about where to focus our research and education efforts. Rather than seeking out the handful of students with innate talent and encouraging them as much as possible to excel to the absolute heights of our society, maybe we should be focusing instead on the students that show the most teachability.

Growing beyond the cream of the crop

Photo credit: Stanislav Kondratiev on Unsplash

Stanford psychologist Carol Dweck was one of the firsts to study this divide. At its core are two basic mindsets: fixed versus growth mindsets.

Individuals with a fixed mindset view talents and gifts as innate. It argues that you can't become more intelligent than you are because that's just how you were born. Maybe there's a bit of wiggle room, but for the most part, you're just as capable as you're ever going to be. With this perspective, the talented amongst us seem more special than the rest of us average folks.

The growth mindset is just the opposite. Sure, there is a measure of innate talent in all of us, but the most important factor in cultivating that talent is hard work. From this perspective, a hardworking kid without talent will outperform a gifted kid that coasts by on their gifts alone.

Dweck argued that individuals with fixed mindsets prioritize appearing as smart as possible, a reasonable strategy if you think that your talent (and therefore your worth) are fixed. They avoid challenges because challenges are opportunities to fail and look stupid, thereby diminishing their worth.

Individuals with a growth mindset, however, seek out challenges. These are opportunities to improve their abilities and to learn new lessons. Fortunately, growth mindsets can be taught — our personality and experiences might encourage us to lean toward one more than the other, but this can be deliberately changed. In one intervention, middle-school students were exposed to a growth-mindset program, teaching concepts such as the neuroscience behind the brain's malleability and strategies for strengthening the brain as though it were a muscle. Then, the researchers measured the students' performance in mathematics. Control groups tended to do worse over time, but the intervention group didn't just perform better than the control, they actually performed better and better over time.

Some criticism has been issued toward Dweck and the fixed versus growth mindset theory. Some psychologists have failed to replicate Dweck's results, criticizing the theory as a result, but she argues that the implementation of programs to encourage growth mindsets has been poor. To prove this, Dweck and her colleague David Yeager recently published a study demonstrating the impact of two 25-minute-long online sessions relating to the promotion of growth mindsets on 12,000 ninth graders.

Even this extremely small intervention appeared to have an effect. On average, grades grew by 0.1 points, and the proportion of students who got a D or an F dropped by 5 percent. Crucially, however, these effects were larger in schools that Dweck and Yeager identified as having a culture centered around growth mindsets. In these schools, grades went up by .15 points and the likelihood of getting a D or an F dropped by 8 percent.

Findings like these show us that, paradoxically, if we want to raise more gifted students, we shouldn't focus on their giftedness. Talent hardly matters in the face of teachability. Students who are willing to learn and to work harder are more likely to succeed and become gifted; not students who are already gifted to begin with. Einstein, Elon Musk, Bill Gates, and other titans of their fields obviously possess exceptional intelligence, but they are also hard workers and lifelong learners.


U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

Why so gassy? Mysterious methane detected on Saturn’s moon

Scientists do not know what is causing the overabundance of the gas.

An impression of NASA's Cassini spacecraft flying through a water plume on the surface of Saturn's moon Enceladus.

Credit: NASA
Surprising Science
  • A new study looked to understand the source of methane on Saturn's moon Enceladus.
  • The scientists used computer models with data from the Cassini spacecraft.
  • The explanation could lie in alien organisms or non-biological processes.
Keep reading Show less

CRISPR therapy cures first genetic disorder inside the body

It marks a breakthrough in using gene editing to treat diseases.

Credit: National Cancer Institute via Unsplash
Technology & Innovation

This article was originally published by our sister site, Freethink.

For the first time, researchers appear to have effectively treated a genetic disorder by directly injecting a CRISPR therapy into patients' bloodstreams — overcoming one of the biggest hurdles to curing diseases with the gene editing technology.

The therapy appears to be astonishingly effective, editing nearly every cell in the liver to stop a disease-causing mutation.

The challenge: CRISPR gives us the ability to correct genetic mutations, and given that such mutations are responsible for more than 6,000 human diseases, the tech has the potential to dramatically improve human health.

One way to use CRISPR to treat diseases is to remove affected cells from a patient, edit out the mutation in the lab, and place the cells back in the body to replicate — that's how one team functionally cured people with the blood disorder sickle cell anemia, editing and then infusing bone marrow cells.

Bone marrow is a special case, though, and many mutations cause disease in organs that are harder to fix.

Another option is to insert the CRISPR system itself into the body so that it can make edits directly in the affected organs (that's only been attempted once, in an ongoing study in which people had a CRISPR therapy injected into their eyes to treat a rare vision disorder).

Injecting a CRISPR therapy right into the bloodstream has been a problem, though, because the therapy has to find the right cells to edit. An inherited mutation will be in the DNA of every cell of your body, but if it only causes disease in the liver, you don't want your therapy being used up in the pancreas or kidneys.

A new CRISPR therapy: Now, researchers from Intellia Therapeutics and Regeneron Pharmaceuticals have demonstrated for the first time that a CRISPR therapy delivered into the bloodstream can travel to desired tissues to make edits.

We can overcome one of the biggest challenges with applying CRISPR clinically.

—JENNIFER DOUDNA

"This is a major milestone for patients," Jennifer Doudna, co-developer of CRISPR, who wasn't involved in the trial, told NPR.

"While these are early data, they show us that we can overcome one of the biggest challenges with applying CRISPR clinically so far, which is being able to deliver it systemically and get it to the right place," she continued.

What they did: During a phase 1 clinical trial, Intellia researchers injected a CRISPR therapy dubbed NTLA-2001 into the bloodstreams of six people with a rare, potentially fatal genetic disorder called transthyretin amyloidosis.

The livers of people with transthyretin amyloidosis produce a destructive protein, and the CRISPR therapy was designed to target the gene that makes the protein and halt its production. After just one injection of NTLA-2001, the three patients given a higher dose saw their levels of the protein drop by 80% to 96%.

A better option: The CRISPR therapy produced only mild adverse effects and did lower the protein levels, but we don't know yet if the effect will be permanent. It'll also be a few months before we know if the therapy can alleviate the symptoms of transthyretin amyloidosis.

This is a wonderful day for the future of gene-editing as a medicine.

—FYODOR URNOV

If everything goes as hoped, though, NTLA-2001 could one day offer a better treatment option for transthyretin amyloidosis than a currently approved medication, patisiran, which only reduces toxic protein levels by 81% and must be injected regularly.

Looking ahead: Even more exciting than NTLA-2001's potential impact on transthyretin amyloidosis, though, is the knowledge that we may be able to use CRISPR injections to treat other genetic disorders that are difficult to target directly, such as heart or brain diseases.

"This is a wonderful day for the future of gene-editing as a medicine," Fyodor Urnov, a UC Berkeley professor of genetics, who wasn't involved in the trial, told NPR. "We as a species are watching this remarkable new show called: our gene-edited future."

Quantcast