'Super blue blood moon' forces NASA to shut down lunar spacecraft

While millions catch a glimpse of a rare lunar event, NASA plans to shut down an orbiter whose purpose is to study the moon.

A rare combination of lunar events—a lunar eclipse, blue moon, and “supermoon”—will coincide on January 31, creating what news outlets are calling a “super blue blood moon”. It seems like it’d be the perfect time for NASA’s primary lunar spacecraft to get to work.

But the government space authority instead plans to power down its Lunar Reconnaissance Orbiter, an 8-year-old spacecraft that generates a variety of detailed maps of the lunar surface, for several hours as it floats in the cold shadow of the Earth.

The “super blue blood moon” will be visible in the early hours of January 31, when the half of the Earth that’s in darkness will simultaneously see a lunar eclipse, blue moon, and “supermoon” (a term actually invented by an astrologer). That combination of lunar events last happened in 1866, though at least a couple lunar eclipses occur every year.




What exactly is a “super blue blood moon”? For one, it’s a bit overhyped once you understand what the terms mean. A blue moon is defined simply as the second full moon in a calendar month. A supermoon occurs when the moon’s irregular orbit brings it unusually close to Earth, causing it to appear about 14 percent bigger — a change that’s hardly perceptible to the human eye. The word “blood” as applied to the moon is of Christian origin, and comes from the reddish-orange color of the moon during a lunar eclipse. 

The main spectacle of the night will be the eclipse, which will prompt the shutdown of the Lunar Reconnaissance Orbiter (LRO). The LRO relies on sunlight for power, so it must switch to batteries during eclipses. The lack of sunlight also makes the LRO extremely cold. This all strains the orbiter, which has been through seven lunar eclipses since its 2009 launch.

Noah Petro, deputy project scientist for the LRO at NASA’s Goddard Space Flight Center, told Seeker that his team does everything they can to minimize wear and tear during eclipses.

“We did a small [engine] burn to put us in an as optimal position as possible — to be able to keep the spacecraft in illumination for as long as we could. In other words, we did a small tweak to minimize the time we were in shadow.”

The team also plans to “preheat” the spacecraft before it enters the eclipse so that it’s warmer and the instruments undergo less strain.

The LRO has seven instruments that NASA uses to study the moon. These can generate 3D maps of the moon, capture high-resolution photos of its surface, measure radiation, create hydrogen distribution maps, and help scientists search for water and ice. During the eclipse, NASA will shut down all of these instruments but one: The Diviner.

“This instrument can stay on to see how the Moon’s uppermost surface responds to the rapid change in temperature during a lunar eclipse,” wrote NASA. “The thermal properties of the surface help scientists better understand its composition and physical properties.”

Lunar eclipses provide a window of time during which scientists can make specific observations about the surface of the moon.

“During a lunar eclipse, the temperature swing is so dramatic that it’s as if the surface of the moon goes from being in an oven to being in a freezer in just a few hours,” said Noah Petro, deputy project scientist for the LRO at NASA’s Goddard Space Flight Center.

NASA has left the Diviner on during past lunar eclipses, using its thermal imaging capabilities to reveal how the character of the moon changes when temperatures swing.

Artist rendering of the LRO via NASA

“In the dark, many familiar craters and other features can’t be seen, and the normally non-descript areas around some craters start to 'glow,' because the rocks there are still warm,” said Paul Hayne of the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder.

Scientists could use the data gathered from the Diviner to scout out future landing sites and to learn more about the evolution of the moon.

“These studies will help us tell the story of how impacts large and small are changing the surface of the Moon over geological time,” said Petro.

Related Articles

Why birds fly south for the winter—and more about bird migration

What do we see from watching birds move across the country?

E. Fleischer
Surprising Science
  • A total of eight billion birds migrate across the U.S. in the fall.
  • The birds who migrate to the tropics fair better than the birds who winter in the U.S.
  • Conservationists can arguably use these numbers to encourage the development of better habitats in the U.S., especially if temperatures begin to vary in the south.

The migration of birds — and we didn't even used to know that birds migrated; we assumed they hibernated; the modern understanding of bird migration was established when a white stork landed in a German village with an arrow from Central Africa through its neck in 1822 — draws us in the direction of having an understanding of the world. A bird is here and then travels somewhere else. Where does it go? It's a variation on the poetic refrain from The Catcher in the Rye. Where do the ducks go? How many are out there? What might it encounter along the way?

While there is a yearly bird count conducted every Christmas by amateur bird watchers across the country done in conjunction with The Audubon Society, the Cornell Lab of Ornithology recently released the results of a study that actually go some way towards answering heretofore abstract questions: every fall, as per cloud computing and 143 weather radar stations, four billion birds migrate into the United States from Canada and four billion more head south to the tropics.

In other words: the birds who went three to four times further than the birds staying in the U.S. faired better than the birds who stayed in the U.S. Why?

Part of the answer could be very well be what you might hear from a conservationist — only with numbers to back it up: the U.S. isn't built for birds. As Ken Rosenberg, the other co-author of the study, notes: "Birds wintering in the U.S. may have more habitat disturbances and more buildings to crash into, and they might not be adapted for that."

The other option is that birds lay more offspring in the U.S. than those who fly south for the winter.

What does observing eight billion birds mean in practice? To give myself a counterpoint to those numbers, I drove out to the Joppa Flats Education Center in Northern Massachusetts. The Center is a building that sits at the entrance to the Parker River National Wildlife Refuge and overlooks the Merrimack River, which is what I climbed the stairs up to the observation deck to see.

Once there, I paused. I took a breath. I listened. I looked out into the distance. Tiny flecks Of Bonaparte's Gulls drew small white lines across the length of the river and the wave of the grass toward a nearby city. What appeared to be flecks of double-crested cormorants made their way to the sea. A telescope downstairs enabled me to watch small gull-like birds make their way along the edges of the river, quietly pecking away at food just beneath the surface of the water. This was the experience of watching maybe half a dozen birds over fifteen-to-twenty minutes, which only served to drive home the scale of birds studied.

How does alcohol affect your brain?

Explore how alcohol affects your brain, from the first sip at the bar to life-long drinking habits.

(Photo by Angie Garrett/Wikimedia Commons)
Mind & Brain
  • Alcohol is the world's most popular drug and has been a part of human culture for at least 9,000 years.
  • Alcohol's effects on the brain range from temporarily limiting mental activity to sustained brain damage, depending on levels consumed and frequency of use.
  • Understanding how alcohol affects your brain can help you determine what drinking habits are best for you.
Keep reading Show less

Scientists sequence the genome of this threatened species

If you want to know what makes a Canadian lynx a Canadian lynx a team of DNA sequencers has figured that out.

Surprising Science
  • A team at UMass Amherst recently sequenced the genome of the Canadian lynx.
  • It's part of a project intending to sequence the genome of every vertebrate in the world.
  • Conservationists interested in the Canadian lynx have a new tool to work with.

If you want to know what makes a Canadian lynx a Canadian lynx, I can now—as of this month—point you directly to the DNA of a Canadian lynx, and say, "That's what makes a lynx a lynx." The genome was sequenced by a team at UMass Amherst, and it's one of 15 animals whose genomes have been sequenced by the Vertebrate Genomes Project, whose stated goal is to sequence the genome of all 66,000 vertebrate species in the world.

Sequencing the genome of a particular species of an animal is important in terms of preserving genetic diversity. Future generations don't necessarily have to worry about our memory of the Canadian Lynx warping the way hearsay warped perception a long time ago.

elephant by Guillaume le Clerc

Artwork: Guillaume le Clerc / Wikimedia Commons

13th-century fantastical depiction of an elephant.

It is easy to see how one can look at 66,000 genomic sequences stored away as being the analogous equivalent of the Svalbard Global Seed Vault. It is a potential tool for future conservationists.

But what are the practicalities of sequencing the genome of a lynx beyond engaging with broad bioethical questions? As the animal's habitat shrinks and Earth warms, the Canadian lynx is demonstrating less genetic diversity. Cross-breeding with bobcats in some portions of the lynx's habitat also represents a challenge to the lynx's genetic makeup. The two themselves are also linked: warming climates could drive Canadian lynxes to cross-breed with bobcats.

John Organ, chief of the U.S. Geological Survey's Cooperative Fish and Wildlife units, said to MassLive that the results of the sequencing "can help us look at land conservation strategies to help maintain lynx on the landscape."

What does DNA have to do with land conservation strategies? Consider the fact that the food found in a landscape, the toxins found in a landscape, or the exposure to drugs can have an impact on genetic activity. That potential change can be transmitted down the generative line. If you know exactly how a lynx's DNA is impacted by something, then the environment they occupy can be fine-tuned to meet the needs of the lynx and any other creature that happens to inhabit that particular portion of the earth.

Given that the Trump administration is considering withdrawing protection for the Canadian lynx, a move that caught scientists by surprise, it is worth having as much information on hand as possible for those who have an interest in preserving the health of this creature—all the way down to the building blocks of a lynx's life.