Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Is this why time speeds up as we age?

We take fewer mental pictures per second.

Photo by Djim Loic on Unsplash
  • Recent memories run in our brains like sped-up old movies.
  • In childhood, we capture images in our memory much more quickly.
  • The complexities of grownup neural pathways are no match for the direct routes of young brains.

Mechanical engineer Adrian Bejan of Duke University has an interesting theory regarding the strange phenomenon by which time seems to speed up as we age. It's not the only theory, mind you, but an interesting one. In his just-published paper, "Why the Days Seem Shorter as We Get Older," he links the phenomenon to the idea that visual images and the manner in which we process them are the language in which we store and retrieve memories.

Considering it an issue of physics, he suggests that we more rapidly capture and remember visual data when we're young and that this sets our personal "mind time" playback rate. Since it takes longer to capture images and memory when we're older, for a number of reasons, the same length of clock time results in fewer images. When we play our back memories at our habitual mind-time rate, they seem sped up to us, much like how old movies appear (the reason why they appear so will be explained shortly). Hence, the clock time they encompass seems to have gone by faster than older memories.

According to Bejan:

"The human mind senses time changing when the perceived images change. Days seemed to last longer in your youth because the young mind receives more images during one day than the same mind in old age."

Old movies

To understand Bejan's concept, it helps to understand the old-movie phenomenon. Obviously, the sense of motion in films is produced by rapidly flashing a sequence of changing images before our eyes that causes our brains to see a cohesive moving event. In the early days of cinema, movie cameras captured images at 16 frames per second.

Since The Jazz Singer in 1927 — in order to accommodate sound — we've filmed and played back movies at 24 frames per second. This means that when we play a second of an old 16 fps film, it goes by in just two-thirds of a second, making it seems like everyone in those days moved more quickly than we do now, or that their time was sped-up. This is the essential conceit behind Bejan's hypothesis.

In this excerpt from Peter Jackson's WWI movie "They Shall Not Grow Old," the playback speed changes from 24 fps to the original 16 fps at the same moment the black-and-white contrast is corrected, and everyone is revealed to be moving at a normal speed. Image source: Imperial War Museums

Stretchy time

According to Bejan's paper, "Time represents perceived changes in stimuli (observed facts), such as visual images. The human mind perceives reality (nature, physics) through images that occur as visual inputs reach the cortex."

Clock time is mutually agreed-upon and measurable: All clocks agree on its passage, barring mechanical irregularities. Mind time is more subjective, though, and, "The time that you perceive is not the same as the time perceived by another." Bejan says this is caused by the way we interpret time looking back on memories recent and distant. Our playback rate is constant but fewer images are recorded in memory by older people, producing the old-movie effect.

Processing memory images more slowly as we age

The paper notes that the average adult makes three to five rapid eye movements — or "saccades" — each second, resting in intervals of 200–300 milliseconds in-between. These rest stops are called "fixations." If fixations go on for too long, the visual image blurs, its perception fades away in about 10 seconds, and it's thus less likely to be captured in memory. Because of this, and because one can rarely take in the entire field of vision without moving one's eyes, saccade reaction time is critical to gathering images to store in memory.

In infants, the fixation periods are shorter, and thus the saccades more frequent, allowing the discernment and capture of more images.

As for older people, Bejan cites a study that found "peak [saccade] velocities were significantly reduced in the elderly." In the study, the entire visual system lagged, and "saccadic accuracy was significantly decreased." There are a couple of reasons for this. First, the more complicated neural pathways that have evolved over the course of a lifetime slow down the trip from the eyes to the cortex — children's pathways are still fairly simple, making the journey much more direct and thus shorter. Second, fatigue — used here as a broad term encompassing "impairment, or loss, of efficiency and skill" — lengthens the fixations so they don't stick and reduces the frequency of saccades.

Why do you think time speeds up?

In addition to Bejan's hypothesis, one can also think of other possible reasons that time speeds up in adults as they age:

  • A change from the flitting-from-object-to-object attention of childhood to the more concentrated attention required for adult tasks produces fewer visually distinct images worthy of capture.
  • Adult responsibilities keep adults busier, and thus the days, weeks, and months fly by more quickly. All of us can remember being bored as children, a sensation that for most of us is a thing of the past.
  • A heightening awareness of brevity of life.

It would be interesting to learn if people in retirement continue to experience the speeding up of time.

Live tomorrow! Unfiltered lessons of a female entrepreneur

Join Pulitzer Prize-winning reporter and best-selling author Charles Duhigg as he interviews Victoria Montgomery Brown, co-founder and CEO of Big Think, live at 1pm EDT tomorrow.

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

How meditation can change your life and mind

Reaching beyond the stereotypes of meditation and embracing the science of mindfulness.

Videos
  • There are a lot of misconceptions when it comes to what mindfulness is and what meditation can do for those who practice it. In this video, professors, neuroscientists, psychologists, composers, authors, and a former Buddhist monk share their experiences, explain the science behind meditation, and discuss the benefits of learning to be in the moment.
  • "Mindfulness allows us to shift our relationship to our experience," explains psychologist Daniel Goleman. The science shows that long-term meditators have higher levels of gamma waves in their brains even when they are not meditating. The effect of this altered response is yet unknown, though it shows that there are lasting cognitive effects.
  • "I think we're looking at meditation as the next big public health revolution," says ABC News anchor Dan Harris. "Meditation is going to join the pantheon of no-brainers like exercise, brushing your teeth and taking the meds that your doctor prescribes to you." Closing out the video is a guided meditation experience led by author Damien Echols that can be practiced anywhere and repeated as many times as you'd like.
Keep reading Show less

Improving Olympic performance with asthma drugs?

A study looks at the performance benefits delivered by asthma drugs when they're taken by athletes who don't have asthma.

Image source: sumroeng chinnapan/Shutterstock
Culture & Religion
  • One on hand, the most common health condition among Olympic athletes is asthma. On the other, asthmatic athletes regularly outperform their non-asthmatic counterparts.
  • A new study assesses the performance-enhancement effects of asthma medication for non-asthmatics.
  • The analysis looks at the effects of both allowed and banned asthma medications.

Keep reading Show less
Scroll down to load more…
Quantcast