Non-partisan brains differ from those of partisans

Non-partisans are real, and their lack of partisanship has a cognative element.

paper dropping into ballot box

A person casts their vote.

I'm friday/ Shutterstock
  • A new study suggests that the brains of non-partisans function differently than those of partisans.
  • Blood flow to regions associated with problem solving differed between the two groups.
  • The findings may lead to further research in how differences in brain activity affect personality.

Despite the repeated claims of those without party affiliations, the belief that non-partisans don't actually exist is widespread. Proponents of this stance argue that those who claim to be non-partisans are merely partisans who don't want to be outed.

A new study offers a strong counterpoint to these commentators; it suggests that the brains of non-partisans function differently than the brains of partisans.

Some people just really don’t want to join political clubs. Go figure. 

The study, published in The Journal of Elections, Public Opinion and Parties as "Neural Nonpartisans," looked at blood flow in the brains of partisans and non-partisans as they played a betting game. The test subjects, all of which were from San Diego County, had their brains scanned as they decided between options with guaranteed payoffs or ones with the chance to lose or gain money. The results were later compared to their voter registrations to confirm their partisanship or lack thereof.

The brain scans demonstrated that blood flow to the right medial temporal pole, orbitofrontal/medial prefrontal cortex, and right ventrolateral prefrontal cortex differs between partisans and non-partisans as they made decisions in the previously mentioned game. These regions are associated with socially relevant memory, decision making, and goal-related responses. Previous studies have also shown them to be essential for social connections.

This demonstrates that the brains of non-partisans approach non-political problems differently than the brains of partisans. Future studies may go further, and see if other brain functions differ between the two groups.

The study is not without limitations; there were a mere 110 test subjects overall. However, given the general lack of research on non-partisans, the study is still an excellent starting point for further research.

What does this mean for politics?

Lead author Dr. Darren Schreiber laid out his interpretation of the data and offered takeaways:

"There is skepticism about the existence of non-partisan voters, that they are just people who don't want to state their preferences. But we have shown their brain activity is different, even aside from politics. We think this has important implications for political campaigning – non-partisans need to be considered a third voter group. In the USA 40 percent of people are thought to be non-partisan voters. Previous research shows negative campaigning deters them from voting. This exploratory study suggests US politicians need to treat swing voters differently, and positive campaigning may be important in winning their support. While heated rhetoric may appeal to a party's base, it can drive non-partisans away from politics all together."

He references a variety of studies on the effects of negative campaigning. It is widely agreed that it drives down turnout.

A variety of studies suggest that differences in political opinion relate to the differences in the brain. While these studies can't tell us how to solve our various political problems, they can offer us ways to help bridge the gap. People who don't leap at the opportunity to join political clubs must be interreacted with differently than those who do to encourage their involvement. While this may come as a shock to seasoned political junkies, it may also come with benefits to our political discourse.


Live on Monday: Does the US need one billion people?

What would happen if you tripled the US population? Join Matthew Yglesias and Charles Duhigg at 1pm ET on Monday, September 28.

‘Time is elastic’: Why time passes faster atop a mountain than at sea level

The idea of 'absolute time' is an illusion. Physics and subjective experience reveal why.

ESA
Surprising Science
  • Since Einstein posited his theory of general relativity, we've understood that gravity has the power to warp space and time.
  • This "time dilation" effect occurs even at small levels.
  • Outside of physics, we experience distortions in how we perceive time — sometimes to a startling extent.
Keep reading Show less

Learn innovation with 3-star Michelin chef Dominique Crenn

Dominique Crenn, the only female chef in America with three Michelin stars, joins Big Think Live.

Big Think LIVE

Having been exposed to mavericks in the French culinary world at a young age, three-star Michelin chef Dominique Crenn made it her mission to cook in a way that is not only delicious and elegant, but also expressive, memorable, and true to her experience.

Keep reading Show less

Universe works like a cosmological neural network, argues new paper

Controversial physics theory says reality around us behaves like a computer neural network.

Synapses in space.

Credit: sakkmesterke
Surprising Science
  • Physicist proposes that the universe behaves like an artificial neural network.
  • The scientist's new paper seeks to reconcile classical physics and quantum mechanics.
  • The theory claims that natural selection produces both atoms and "observers".
Keep reading Show less

We studied what happens when guys add their cats to their dating app profiles

43% of people think they can get a sense of someone's personality by their picture.

Photo by Luigi Pozzoli on Unsplash
Sex & Relationships

If you've used a dating app, you'll know the importance of choosing good profile pics.

Keep reading Show less
Coronavirus

Quarantine rule breakers in 17th-century Italy partied all night – and some clergy condemned the feasting

17th-century outbreaks of plague in Italy reveal both tensions between religious and public health authorities.

Scroll down to load more…
Quantcast